Nvidia GPU 入门教程之 07 TensorFlow MNiST GPU A100(教程含源码)

简介

目前,您可以从三个流行的开源深度学习库中进行选择:

  • TensorFlow,
  • Microsoft Cognitive Toolkit (CNTK),
  • Theano.

因此,为了避免任何混淆,我们将 Keras 实现称为多后端 Keras。

TensorFlow 本身现在与它自己的 Keras 实现捆绑在一起,tf.keras。它只支持TensorFlow 作为后端。

实战代码

# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load in 

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

# Input data files are available in the "../input/" directory.
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory

import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        pri

你可能感兴趣的:(NVIDIA,GPU和Isaac开发教程,tensorflow,人工智能,python)