基础GCN图卷积层的pytorch的三种实现。

主要内容:
1 实现基于Parameter的GCN层定义;
2 调整模型以实现Batch计算;
3 基于Linear全连接层的GCN层定义;
4 DGL和Pytorch_geometric对GCN的定义;
5 基于Conv2D的GCN图卷积的方式的定义(待补充);

一、基于Parameter的GCN层定义

import math
from torch import nn
import torch.nn.init as init
import torch
import torch.nn.functional as F

def import_class(name):
    components = name.split('.')
    mod = __import__(components[0])
    for comp in components[1:]:
        mod = getattr(mod, comp)
    return mod

def bn_init(bn, scale):
    nn.init.constant_(bn.weight, scale)
    nn.init.constant_(bn.bias, 0)

class GraphConvolution(nn.Module):
    def __init__(self, input_dim, output_dim, use_bias=True):
        super(GraphConvolution, self).__init__()
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.use_bias = use_bias
        self.weight = nn.Parameter(torch.Tensor(input_dim, output_dim))
        if self.use_bias:
            self.bias = nn.Parameter(torch.Tensor(output_dim))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self):
        init.kaiming_uniform_(self.weight)
        if self.use_bias:
            init.zeros_(self.bias)

    def forward(self, adjacency, input_feature):
        support = torch.mm(input_feature, self.weight).cuda()
        output = torch.sparse.mm(adjacency, support)
        if self.use_bias:
            output += self.bias
        return output

    def __repr__(self):
        return self.__class__.__name__ + ' (' \
               + str(self.input_dim) + ' -> ' \
               + str(self.output_dim) + ')'

class Model(nn.Module):
    def __init__(self, input_dim=3, num_point=7, adjacency):
        super(Model, self).__init__()
        self.adjacency = torch.tensor(adjacency, dtype=torch.float32).cuda()

        self.data_bn = nn.BatchNorm1d(input_dim * num_point)
        self.gcn1 = GraphConvolution(input_dim, 16)
        self.data_bn1 = nn.BatchNorm1d(16 * num_point)
        self.gcn2 = GraphConvolution(16, 32)
        self.data_bn2 = nn.BatchNorm1d(32 * num_point)
        self.gcn3 = GraphConvolution(32, 16)
        self.data_bn3 = nn.BatchNorm1d(16 * num_point)
        self.gcn4 = GraphConvolution(16, 8)
        self.data_bn4 = nn.BatchNorm1d(8 * num_point)

        self.fc = nn.Linear(8, 2)
        nn.init.normal_(self.fc.weight, 0, math.sqrt(2. / 2))
        bn_init(self.data_bn, 1)
        bn_init(self.data_bn1, 1)
        bn_init(self.data_bn2, 1)
        bn_init(self.data_bn3, 1)
        bn_init(self.data_bn4, 1)

    def forward(self, x):
        N, V, C = x.size()
        x = x.view(N, V * C)
        x = self.data_bn(x)
        x = x.view(N, V, C)

        x = F.relu(self.gcn1(self.adjacency, x))
        N, V, C = x.size()
        x = x.contiguous().view(N, V * C)
        # print("- x:{}".format(x.size()))
        x = self.data_bn1(x)
        x = x.resize(N, V, C)

        x = F.relu(self.gcn2(self.adjacency, x))
        N, V, C = x.size()
        x = x.contiguous().view(N, V * C)
        x = self.data_bn2(x)
        x = x.view(N, V, C)

        x = F.relu(self.gcn3(self.adjacency, x))
        N, V, C = x.size()
        x = x.contiguous().view(N, V * C)
        x = self.data_bn3(x)
        x = x.view(N, V, C)

        x = F.relu(self.gcn4(self.adjacency, x))
        N, V, C = x.size()
        x = x.contiguous().view(N, V * C)
        x = self.data_bn4(x)
        x = x.view(N, V, C)

        x = x.mean(1)
        # print("out:{}".format(out.shape))
        return self.fc(x)
  1. 以上的重点是,GraphConvolution类,是GCN的基本计算单元, A∗X∗W。
  2. Model类只不过是像调用常见的pytorch的网络层的API一样定义和调用。其中,批归一化操作对提升模型捕捉区分性特征有很大帮助;而最终用于预测的特征是图卷积之后对所有节点取平均值
  3. 这个图卷积层也是github中的pygcn项目所使用的。

二、GCN层走向实用的关键一步:Batch计算

需要更换的位置在:GraphConvolution类的forward函数。重点在于引入了爱因斯坦约定函数,以实现batch矩阵计算
如果是使用原来的矩阵相乘的mm函数,且feedbatchsize量的数据,则会引起错误:
RuntimeError: tensors must be 2-D,指明此处的张量必须是二维的。

    def forward(self, adjacency, input_feature):
        support = torch.einsum('mik,kj->mij', input_feature, self.weight).cuda()
        output = torch.einsum('ki,mij->mkj', adjacency, support)
        if self.use_bias:
            output += self.bias
        return output

爱因斯坦求和约定sinsum函数,在numpy和torch中都有API。重点是学会如何使用,推荐阅读文章:
https://www.cnblogs.com/mengnan/p/10319701.html

文章中重点介绍了:爱因斯坦求和约定常用的几个场合。其中介绍了本节需要的“batch矩阵相乘”。除此之外,还提及,batch矩阵相乘是另一个场景“张量缩约”的一个特例,即不是一般性的规则如“张量缩约”,它描述了两个张量的相乘规则,只要看懂这个,就能够理解深度学习中的一些代码实现,主要公式和描述摘抄如下
在这里插入图片描述

a=torch.randn(2,3,5,7)
b=torch.randn(11,13,3,17,5)
torch.einsum('pqrs,tuqvr->pstuv', [a, b]).shape
>>>torch.Size([2, 7, 11, 13, 17])

三、基于Linear全连接层的GCN层定义

class GCN(nn.Module):
	'''
	Z = AXW
	'''
	def __init__(self , A, dim_in , dim_out):
		super(GCN,self).__init__()
		self.A = A
		self.fc1 = nn.Linear(dim_in ,dim_in,bias=False)
		self.fc2 = nn.Linear(dim_in,dim_in//2,bias=False)
		self.fc3 = nn.Linear(dim_in//2,dim_out,bias=False)

	def forward(self,X):
		'''
		计算三层gcn
		'''
		X = F.relu(self.fc1(self.A.mm(X)))
		X = F.relu(self.fc2(self.A.mm(X)))
		return self.fc3(self.A.mm(X))
  1. 其实这一点与基于Parameter的GCN定义方式一致,只不过后者将Linear的定义拆开来。
  2. pytorch中linear的源码与上面定义的GraphConvolution类基本一致,且基本相同。
  3. 该形式参考文章:https://zhuanlan.zhihu.com/p/54525205

四、DGL和Pytorch_geometric

  1. DGL:https://docs.dgl.ai/en/0.6.x/tutorials/models/1_gnn/1_gcn.html
  2. pytorch_geometric:https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/gcn_conv.html#GCNConv,代码如下,粗略观察可知,该网络层的定义方式与LInear的定义方式十分相似,由此,其他类别的网络层也大致为此。
class GCNConv(MessagePassing):
	def __init__(self, in_channels: int, out_channels: int,
                 improved: bool = False, cached: bool = False,
                 add_self_loops: bool = True, normalize: bool = True,
                 bias: bool = True, **kwargs):

        kwargs.setdefault('aggr', 'add')
        super(GCNConv, self).__init__(**kwargs)

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.improved = improved
        self.cached = cached
        self.add_self_loops = add_self_loops
        self.normalize = normalize

        self._cached_edge_index = None
        self._cached_adj_t = None

        self.weight = Parameter(torch.Tensor(in_channels, out_channels))

        if bias:
            self.bias = Parameter(torch.Tensor(out_channels))
        else:
            self.register_parameter('bias', None)

        self.reset_parameters()

    def reset_parameters(self):
        glorot(self.weight)
        zeros(self.bias)
        self._cached_edge_index = None
        self._cached_adj_t = None


    def forward(self, x: Tensor, edge_index: Adj,
                edge_weight: OptTensor = None) -> Tensor:
        """"""

        if self.normalize:
            if isinstance(edge_index, Tensor):
                cache = self._cached_edge_index
                if cache is None:
                    edge_index, edge_weight = gcn_norm(  # yapf: disable
                        edge_index, edge_weight, x.size(self.node_dim),
                        self.improved, self.add_self_loops)
                    if self.cached:
                        self._cached_edge_index = (edge_index, edge_weight)
                else:
                    edge_index, edge_weight = cache[0], cache[1]

            elif isinstance(edge_index, SparseTensor):
                cache = self._cached_adj_t
                if cache is None:
                    edge_index = gcn_norm(  # yapf: disable
                        edge_index, edge_weight, x.size(self.node_dim),
                        self.improved, self.add_self_loops)
                    if self.cached:
                        self._cached_adj_t = edge_index
                else:
                    edge_index = cache

        x = x @ self.weight

        # propagate_type: (x: Tensor, edge_weight: OptTensor)
        out = self.propagate(edge_index, x=x, edge_weight=edge_weight,
                             size=None)

        if self.bias is not None:
            out += self.bias

        return out


    def message(self, x_j: Tensor, edge_weight: OptTensor) -> Tensor:
        return x_j if edge_weight is None else edge_weight.view(-1, 1) * x_j

    def message_and_aggregate(self, adj_t: SparseTensor, x: Tensor) -> Tensor:
        return matmul(adj_t, x, reduce=self.aggr)

    def __repr__(self):
        return '{}({}, {})'.format(self.__class__.__name__, self.in_channels,
                                   self.out_channels)

五、基于Conv2D的图卷积方式的对比

Conv2D的卷积形式,基本上见于STGCN及其之后的一系列模型的延伸。
以ST-GCN中的空间卷积代码:
self.gcn = ConvTemporalGraphical(in_channels, out_channels,kernel_size[1])

class ConvTemporalGraphical(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 t_kernel_size=1,
                 t_stride=1,
                 t_padding=0,
                 t_dilation=1,
                 bias=True):
        super().__init__()

        self.kernel_size = kernel_size
        self.conv = nn.Conv2d(
            in_channels,
            out_channels * kernel_size,
            kernel_size=(t_kernel_size, 1),
            padding=(t_padding, 0),
            stride=(t_stride, 1),
            dilation=(t_dilation, 1),
            bias=bias)

    def forward(self, x, A):
        assert A.size(0) == self.kernel_size

        x = self.conv(x)

        n, kc, t, v = x.size()
        x = x.view(n, self.kernel_size, kc//self.kernel_size, t, v)
        x = torch.einsum('nkctv,kvw->nctw', (x, A))

        return x.contiguous(), A
  1. 它是一种类似CNN卷积公式的表达:
    在这里插入图片描述
    这一点目前不太理解,不能解释。详情见论文:《Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition》

你可能感兴趣的:(DL网络层基础实现,卷积,深度学习,神经网络)