这个concatenate用于将矩阵合并,他将沿着已经存在的轴合并一个矩阵,
相关参数有(a1, a2, ...), axis=0, out=None, dtype=None, casting="same_kind",
其中第一个参数是用户输入的矩阵, 这些输入的矩阵必须要在将要合并的对应的轴上有相同的形状,
官方文档的机器翻译:矩阵必须具有相同的形状,除非是与轴对应的尺寸(默认为第一个)。
numpy.concatenate((a1, a2, ...), axis=0, out=None, dtype=None, casting="same_kind")
Join a sequence of arrays along an existing axis.
沿着已经存在的轴合并一个矩阵
相关参数
Parameters
a1, a2, …sequence of array_like
The arrays must have the same shape, except in the dimension corresponding to axis (the first, by default).
这些输入的矩阵必须要在将要合并的对应的轴上有相同的形状,
比如,给出两个变量,并将他们沿着axis=1的轴,进行合并:
a = np.arange(3*3).reshape((3,3))
b = np.arange(3*4).reshape((3,4))
a,b
(array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]]),
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]]))
np.concatenate([a,b],axis=1)
array([[ 0, 1, 2, 0, 1, 2, 3],
[ 3, 4, 5, 4, 5, 6, 7],
[ 6, 7, 8, 8, 9, 10, 11]])
上面是沿着列进行合并,尽管他们的列数不同,但是他们的行数相同,因此也可以合并。
axis int, optional
The axis along which the arrays will be joined. If axis is None, arrays are flattened before use. Default is 0.
如果将axis设置为None,那么将对给出的矩阵先进行展平,即先将其转换为一维数组,再合并,
默认的axis参数是0:
np.concatenate([a,b],axis=None)
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11])
casting {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional
Controls what kind of data casting may occur. Defaults to ‘same_kind’.
下面给出一些可能触发的错误:
np.concatenate(a,b,axis=None)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
in
----> 1 np.concatenate(a,b,axis=None)
<__array_function__ internals> in concatenate(*args, **kwargs)
TypeError: concatenate() got multiple values for argument 'axis'
这个类型错误发生的原因是,将要合并的两个数组未添加括号的就作为参数输入了
正确的形式如下:
np.concatenate([a,b],axis=None)
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11])
或者:
c = (a,b)
np.concatenate(c,axis=None)
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11])
希望这篇文章对你的学习有帮助