自己的数据集为开源的ICDAR2019-LSVT数据集,下载下来后包括train_full_images_0和train_full_images_1。
import os
import numpy as np
import json
import argparse
import os
from glob import glob
# 定义参数
jsonPath = "/Users/yi/Desktop/ICDAR2019-LSVT/icdar2019-lsvt-train/train_full_labels.json"
absPath="icdar2019-lsvt-train/train_full_images/"
def get_args():
#val_full_images
parser = argparse.ArgumentParser()
parser.add_argument('--input', default='/Users/yi/Desktop/ICDAR2019-LSVT/icdar2019-lsvt-train/train_full_images/')
parser.add_argument('--out_dir', default='/Users/yi/Desktop/ICDAR2019-LSVT/icdar2019-lsvt-train/train_full_images/')
return parser.parse_args()
def cidar2019(jpg_files, task="Label"):
count = 0
if not os.path.isdir(get_args().out_dir):
os.makedirs(get_args().out_dir)
# 创建label存储的文件,例 test.txt
label_file = open('/Users/yi/Desktop/ICDAR2019-LSVT/icdar2019-lsvt-train/train_full_images/%s.txt' % (task), 'w')
for jpg_name in jpg_files:
#使用json.load()加载并读取json文件,json.loads()为读取json字符串
json_file = json.load(open(jsonPath, "r", encoding="utf-8"))
#for multi in json_file:
#if multi == jpg_name:
annot_ppocr = []
imagePath = get_args().input + jpg_name + ".jpg"
#获取自己文件当前的相对路径
absPath = os.path.join(imagePath.split("/")[-3],imagePath.split("/")[-2], imagePath.split("/")[-1])
#json串的循环访问
for mm in json_file[jpg_name]:
pts = []
#获取transcription字段内容
transcription = mm["transcription"]
#获取points字段内容
points = mm["points"]
pts.append(points[0])
pts.append(points[1])
pts.append(points[2])
pts.append(points[3])
#按固定格式添加串
annot_ppocr.append({"transcription": transcription, "points": pts, "difficult": False})
print(annot_ppocr)
label_file.write(absPath + '\t' + json.dumps(annot_ppocr, ensure_ascii=False)+ '\n' )
count = count + 1
print(count)
def main(args):
files = glob(args.input+ "*.jpg") #获取文件夹下所有.json文件
#将文件名与文件后缀分开
files = [i.split("/")[-1].split(".jpg")[0] for i in files]
test_files = files
print(files)
cidar2019(test_files , "Label")
if __name__ == '__main__':
main(get_args())
有的模型在处理图片时需要的输入是二值图,这时我们就需要将图片根据labelme标注生成的.json文件
github上开源的Pytorch-UNet训练模型时要求的输入图像为二值图,所以在这里第一步就是根据json文件将图片转化为mask型并输出。下面是labelme在文件anaconda3/envs/labelme/lib/python3.7/site-packages/labelme/cli下json_to_dataset.py转化单个文件的源代码:
import argparse
import base64
import json
import os
import os.path as osp
import imgviz
import PIL.Image
from labelme.logger import logger
from labelme import utils
def main():
logger.warning(
"This script is aimed to demonstrate how to convert the "
"JSON file to a single image dataset."
)
logger.warning(
"It won't handle multiple JSON files to generate a "
"real-use dataset."
)
parser = argparse.ArgumentParser()
parser.add_argument("json_file")
parser.add_argument("-o", "--out", default=None)
args = parser.parse_args()
json_file = args.json_file
if args.out is None:
out_dir = osp.basename(json_file).replace(".", "_")
out_dir = osp.join(osp.dirname(json_file), out_dir)
else:
out_dir = args.out
if not osp.exists(out_dir):
os.mkdir(out_dir)
data = json.load(open(json_file))
imageData = data.get("imageData")
if not imageData:
imagePath = os.path.join(os.path.dirname(json_file), data["imagePath"])
with open(imagePath, "rb") as f:
imageData = f.read()
imageData = base64.b64encode(imageData).decode("utf-8")
img = utils.img_b64_to_arr(imageData)
label_name_to_value = {"_background_": 0}
for shape in sorted(data["shapes"], key=lambda x: x["label"]):
label_name = shape["label"]
if label_name in label_name_to_value:
label_value = label_name_to_value[label_name]
else:
label_value = len(label_name_to_value)
label_name_to_value[label_name] = label_value
lbl, _ = utils.shapes_to_label(
img.shape, data["shapes"], label_name_to_value
)
label_names = [None] * (max(label_name_to_value.values()) + 1)
for name, value in label_name_to_value.items():
label_names[value] = name
lbl_viz = imgviz.label2rgb(
label=lbl, img=imgviz.asgray(img), label_names=label_names, loc="rb"
)
PIL.Image.fromarray(img).save(osp.join(out_dir, "img.png"))
utils.lblsave(osp.join(out_dir, "label.png"), lbl)
PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, "label_viz.png"))
with open(osp.join(out_dir, "label_names.txt"), "w") as f:
for lbl_name in label_names:
f.write(lbl_name + "\n")
logger.info("Saved to: {}".format(out_dir))
if __name__ == "__main__":
main()
之后自己对代码进行了修改,输入是含有原图片.jpg和标注.json的文件夹,输出是含有所有二值图的文件夹,更改后代码如下:
import argparse
import base64
import json
import os
import os.path as osp
from glob import glob
from labelme.logger import logger
from labelme import utils
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--input', default='/Users/yi/Desktop/val_seg_dsy/')
parser.add_argument('--out', default='/Users/yi/Desktop/val_seg_dsy_mask/')
return parser.parse_args()
def data_to_mask(json_files):
for json_name in json_files:
jsonPath = get_args().input + json_name + ".json"
print(jsonPath)
imagePath = get_args().input + json_name + ".jpg"
json_file = json.load(open(jsonPath, "r", encoding="utf-8"))
imageData = json_file.get("imageData")
print(imageData)
if not imageData:
imagePath = get_args().input + json_name + ".jpg"
with open(imagePath, "rb") as f:
imageData = f.read()
imageData = base64.b64encode(imageData).decode("utf-8")
img = utils.img_b64_to_arr(imageData)
#转化生成
label_name_to_value = {"_background_": 0}
print(label_name_to_value)
for shape in sorted(json_file["shapes"], key=lambda x: x["label"]):
label_name = shape["label"]
if label_name in label_name_to_value:
label_value = label_name_to_value[label_name]
else:
label_value = len(label_name_to_value)
label_name_to_value[label_name] = label_value
lbl, _ = utils.shapes_to_label(
img.shape, json_file["shapes"], label_name_to_value
)
label_names = [None] * (max(label_name_to_value.values()) + 1)
for name, value in label_name_to_value.items():
label_names[value] = name
# lbl_viz = imgviz.label2rgb(
# label=lbl, img=imgviz.asgray(img), label_names=label_names, loc="rb"
# )
#取消生成灰度图
#PIL.Image.fromarray(img).save(osp.join(get_args().out, json_name+".png"))
#保存
utils.lblsave(osp.join(get_args().out, json_name+"_mask.png"), lbl)
# PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, "label_viz.png"))
#print(osp.join(get_args().out, json_name+".png"))
# with open(osp.join(out_dir, "label_names.txt"), "w") as f:
# for lbl_name in label_names:
# f.write(lbl_name + "\n")
logger.info("Saved to: {}".format(get_args().out))
def main(args):
files = glob(args.input + "*.json")
print(files)
out_dir = args.out
if not osp.exists(out_dir):
os.mkdir(out_dir)
files = [i.split("/")[-1].split(".json")[0] for i in files]
test_files = files
data_to_mask(test_files)
if __name__ == "__main__":
main(get_args())
基于GitHub上开源代码,进行训练,训练过程后续更新。