机器学习(MachineLearning,ML)是人工智能的子领域,也是人工智能的核心。它囊括了几乎所有对世界影响最大的方法(包括深度学习)。
机器学习理论主要是设计和分析一些让计算机可以自动学习的算法。深度学习(DeepLearning,DL)属于机器学习的子类。
它的灵感来源于人类大脑的工作方式,是利用深度神经网络来解决特征表达的一种学习过程。深度神经网络本身并非是一个全新的概念,可理解为包含多个隐含层的神经网络结构。
为了提高深层神经网络的训练效果,人们对神经元的连接方法以及激活函数等方面做出了调整。其目的在于建立、模拟人脑进行分析学习的神经网络,模仿人脑的机制来解释数据,如文本、图像、声音。
1、应用场景机器学习在指纹识别、特征物体检测等领域的应用基本达到了商业化的要求。深度学习主要应用于文字识别、人脸技术、语义分析、智能监控等领域。目前在智能硬件、教育、医疗等行业也在快速布局。
2、所需数据量机器学习能够适应各种数据量,特别是数据量较小的场景。如果数据量迅速增加,那么深度学习的效果将更加突出,这是因为深度学习算法需要大量数据才能完美理解。
3、执行时间执行时间是指训练算法所需要的时间量。一般来说,深度学习算法需要大量时间进行训练。这是因为该算法包含有很多参数,因此训练它们需要比平时更长的时间。相对而言,机器学习算法的执行时间更少。
4、解决问题的方法机器学习算法遵循标准程序以解决问题。它将问题拆分成数个部分,对其进行分别解决,而后再将结果结合起来以获得所需的答案。深度学习则以集中方式解决问题,而不必进行问题拆分。
谷歌人工智能写作项目:神经网络伪原创
数据挖掘的常用方法有:神经网络方法神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注AI发猫。
遗传算法遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。
决策树方法决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。
粗集方法粗集理论是一种研究不精确、不确定知识的数学工具。粗集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。粗集处理的对象是类似二维关系表的信息表。
覆盖正例排斥反例方法它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。首先在正例集合中任选一个种子,到反例集合中逐个比较。与字段取值构成的选择子相容则舍去,相反则保留。
按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。统计分析方法在数据库字段项之间存在两种关系:函数关系和相关关系,对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。
可进行常用统计、回归分析、相关分析、差异分析等。模糊集方法即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。
系统的复杂性越高,模糊性越强,一般模糊集合理论是用隶属度来刻画模糊事物的亦此亦彼性的。
。
1.基于历史的MBR分析基于历史(Memory-BasedReasoning)的MBR分析方法最主要的概念是用已知的案例(case)来预测未来案例的一些属性(attribute),通常找寻最相似的案例来做比较。
MBR中有两个主要的要素,分别为距离函数(distancefunction)与结合函数(combinationfunction)。
距离函数的用意在找出最相似的案例;结合函数则将相似案例的属性结合起来,以供预测之用。MBR的优点是它容许各种型态的数据,这些数据不需服从某些假设。
另一个优点是其具备学习能力,它能藉由旧案例的学习来获取关于新案例的知识。较令人诟病的是它需要大量的历史数据,有足够的历史数据方能做良好的预测。
此外记忆基础推理法在处理上亦较为费时,不易发现最佳的距离函数与结合函数。其可应用的范围包括欺骗行为的侦测、客户反应预测、医学诊疗、反应的归类等方面。
2.购物篮分析购物篮分析(MarketBasketAnalysis)最主要的目的在于找出什么样的东西应该放在一起?商业上的应用在藉由顾客的购买行为来了解是什么样的顾客以及这些顾客为什么买这些产品,找出相关的联想(association)规则,企业藉由这些规则的挖掘获得利益与建立竞争优势。
举例来说,零售店可藉由此分析改变置物架上的商品排列或是设计吸引客户的商业套餐等等。
购物篮分析基本运作过程包含下列三点:1.选择正确的品项:这里所指的正确乃是针对企业体而言,必须要在数以百计、千计品项中选择出真正有用的品项出来。
2.经由对共同发生矩阵(co-occurrencematrix)的探讨挖掘出联想规则。
3.克服实际上的限制:所选择的品项愈多,计算所耗费的资源与时间愈久(呈现指数递增),此时必须运用一些技术以降低资源与时间的损耗。
购物篮分析技术可以应用在下列问题上:针对信用卡购物,能够预测未来顾客可能购买什么。对于电信与金融服务业而言,经由购物篮分析能够设计不同的服务组合以扩大利润。
保险业能藉由购物篮分析侦测出可能不寻常的投保组合并作预防。对病人而言,在疗程的组合上,购物篮分析能作为是否这些疗程组合会导致并发症的判断依据。
3.决策树决策树(DecisionTrees)在解决归类与预测上有着极强的能力,它以法则的方式表达,而这些法则则以一连串的问题表示出来,经由不断询问问题最终能导出所需的结果。
典型的决策树顶端是一个树根,底部有许多的树叶,它将纪录分解成不同的子集,每个子集中的字段可能都包含一个简单的法则。此外,决策树可能有着不同的外型,例如二元树、三元树或混和的决策树型态。
4.遗传算法遗传算法(GeneticAlgorithm)学习细胞演化的过程,细胞间可经由不断的选择、复制、交配、突变产生更佳的新细胞。
基因算法的运作方式也很类似,它必须预先建立好一个模式,再经由一连串类似产生新细胞过程的运作,利用适合函数(fitnessfunction)决定所产生的后代是否与这个模式吻合,最后仅有最吻合的结果能够存活,这个程序一直运作直到此函数收敛到最佳解。
基因算法在群集(cluster)问题上有不错的表现,一般可用来辅助记忆基础推理法与类神经网络的应用。
5.聚类分析聚类分析(ClusterDetection)这个技术涵盖范围相当广泛,包含基因算法、类神经网络、统计学中的群集分析都有这个功能。
它的目标为找出数据中以前未知的相似群体,在许许多多的分析中,刚开始都运用到群集侦测技术,以作为研究的开端。
6.连接分析连接分析(LinkAnalysis)是以数学中之图形理论(graphtheory)为基础,藉由记录之间的关系发展出一个模式,它是以关系为主体,由人与人、物与物或是人与物的关系发展出相当多的应用。
例如电信服务业可藉连结分析收集到顾客使用电话的时间与频率,进而推断顾客使用偏好为何,提出有利于公司的方案。除了电信业之外,愈来愈多的营销业者亦利用连结分析做有利于企业的研究。
7.OLAP分析严格说起来,OLAP(On-LineAnalyticProcessing;OLAP)分析并不算特别的一个数据挖掘技术,但是透过在线分析处理工具,使用者能更清楚的了解数据所隐藏的潜在意涵。
如同一些视觉处理技术一般,透过图表或图形等方式显现,对一般人而言,感觉会更友善。这样的工具亦能辅助将数据转变成信息的目标。
8.神经网络神经网络是以重复学习的方法,将一串例子交与学习,使其归纳出一足以区分的样式。若面对新的例证,神经网络即可根据其过去学习的成果归纳后,推导出新的结果,乃属于机器学习的一种。
数据挖掘的相关问题也可采类神经学习的方式,其学习效果十分正确并可做预测功能。
9.判别分析当所遭遇问题它的因变量为定性(categorical),而自变量(预测变量)为定量(metric)时,判别分析为一非常适当之技术,通常应用在解决分类的问题上面。
若因变量由两个群体所构成,称之为双群体—判别分析(Two-GroupDiscriminantAnalysis);若由多个群体构成,则称之为多元判别分析(MultipleDiscriminantAnalysis;MDA)。
a.找出预测变量的线性组合,使组间变异相对于组内变异的比值为最大,而每一个线性组合与先前已经获得的线性组合均不相关。b.检定各组的重心是否有差异。c.找出哪些预测变量具有最大的区别能力。
d.根据新受试者的预测变量数值,将该受试者指派到某一群体。10.逻辑回归分析当判别分析中群体不符合正态分布假设时,逻辑回归分析是一个很好的替代方法。
逻辑回归分析并非预测事件(event)是否发生,而是预测该事件的机率。
它将自变量与因变量的关系假定是S行的形状,当自变量很小时,机率值接近为零;当自变量值慢慢增加时,机率值沿着曲线增加,增加到一定程度时,曲线协率开始减小,故机率值介于0与1之间。
这里面有些问题概念很多,真不是一句两句可以解释清楚的,所以只能初步说一下。问题一:什么是神经网络框架,什么是模型,两者之间是什么关系。
模型好比是一栋楼,楼的结构可以是茅草屋也可以是高楼大厦,神经网络是比较复杂的模型,框架结构就像是高楼大厦。问题二:图片标注后的机器学习又是什么,训练出的是模型还是神经网络首先要弄清什么是机器学习。
机器学习就是用信息(也叫训练样本)提供给机器让机器通过数学的手段(调整参数)找到其中的规律(获取经验),并用经验来解决给定信息涉及到的问题。
图片标注的目的也就是给机器提供信息,引导机器去提取标注的内容的特征规律。而训练出来的是模型,而模型的结构上讲属于神经网络(卷积神经网络)。问题三:行业上常见的、使用比较多的神经网络/模型又是什么?
视觉类的神经网络有三大类:1.图像分类,对于整个图像来判定其类别。这种模型一般解决不了常见的问题,运用不广泛。2.物体识别,用来检测图像内的物体并标出其具体位置和轮廓边框。
较常见的有CRNN和YOLO3.图像分割,将不规则的物体或者线条的阴影标出来。这里UNet用的比较多。问题四:如何从0开始搞一套视觉学习平台出来?
这里首先要搞懂什么叫卷积神经网络,其数学原理是怎么回事,然后还要有软工(前端、后端、应用平台架构)的经验才能把模型训练和管理、图片标注、模型服务这一整套东西搞出来,基本上没有一个大团队是不可能实现的。
人工神经网络理论百度网盘下载:链接: 提取码:rxlc简介:本书是人工神经网络理论的入门书籍。全书共分十章。
第一章主要阐述人工神经网络理论的产生及发展历史、理论特点和研究方向;第二章至第九章介绍人工神经网络理论中比较成熟且常用的几种主要网络结构、算法和应用途径;第十章用较多篇幅介绍了人工神经网络理论在各个领域的应用实例。
。
一、“类脑”概念1.在早期,类脑一般是指从软硬件上模拟生物神经系统的结构与信息加工方式。随着软硬件技术的进步,以及神经科学与各种工程技术的多方面融合发展,脑与机的界限被逐步打破。
尤其是脑机接口,在计算机与生物脑之间建立了一条直接交流的信息通道,这为实现脑与机的双向交互、协同工作及一体化奠定了基础。随之,“类脑”的概念逐步从信息域自然地延伸到生命域。
因此,以脑机互联这一独特方式实现计算或智能,也被归入“类脑研究”范畴。
2.类脑研究是以“人造超级大脑”为目标,借鉴人脑的信息处理方式,模拟大脑神经系统,构建以数值计算为基础的虚拟超级脑;或通过脑机交互,将计算与生命体融合,构建以虚拟脑与生物脑为物质基础的脑机一体化的超级大脑,最终建立新型的计算结构与智能形态。
我们不妨将类脑的英文称为Cybrain(CyberneticBrain),即仿脑及融脑之意。
其主要特征包括:A.以信息为主要手段:用信息手段认识脑、模拟脑乃至融合脑;B.以人造超级大脑为核心目标:包括以计算仿脑为主的虚拟超级脑,以及虚拟脑与生物脑一体化的超级大脑这两种形态;C.以学科交叉会聚为突破方式:不单是计算机与神经科学交叉,还需要与微电子、材料、心理、物理、数学等大学科密切交叉会聚,才有更大机会取得突破。
3.类脑研究的主要内容:类脑研究要全面实现“懂脑、仿脑、连脑”,脑认知基础、类脑模拟、脑机互联三个方面缺一不可。
因此,我们将类脑研究主要内容归纳为三个方面:信息手段认识脑、计算方式模拟脑、脑机融合增强脑(见图1)。其中,信息技术贯穿始终。
二、卷积神经网络1.卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习(deeplearning)的代表算法之一。
2.卷积神经网络具有表征学习(representationlearning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariantclassification),因此也被称为“平移不变人工神经网络(Shift-InvariantArtificialNeuralNetworks,SIANN)” 。
3.对卷积神经网络的研究始于二十世纪80至90年代,时间延迟网络和LeNet-5是最早出现的卷积神经网络 。
在二十一世纪后,随着深度学习理论的提出和数值计算设备的改进,卷积神经网络得到了快速发展,并被应用于计算机视觉、自然语言处理等领域。
4.卷积神经网络仿造生物的视知觉(visualperception)机制构建,可以进行监督学习和非监督学习,其隐含层内的卷积核参数共享和层间连接的稀疏性使得卷积神经网络能够以较小的计算量对格点化(grid-liketopology)特征,例如像素和音频进行学习、有稳定的效果且对数据没有额外的特征工程(featureengineering)要求。
三、二者关系人工智能时代的到来,大数据可以提供给计算机对人脑的模拟训练,强大的算力可以支撑计算机能够充分利用大数据获得更多规律,进行知识的学习。
类脑智能做的面比较广,出发点是开发一个与人脑具有类似功能的模拟大脑出来,达到人类的智慧,深度学习只是其中的一个小小的分支,是对人脑研究的一个小成果,而类脑智能相对研究的比较宽泛和深入。
而卷积神经网络只是深度学习的代表算法之一。
随着计算机的快速发展,人工智能越来越火。我们每个人都时不时的听到人工智能,但是人工智能到底是什么?它和机器学习和深度学习到底是什么关系?
一、人工智能(ArtificialIntelligence)人工智能(ArtificialIntelligence),英文缩写为AI。是计算机科学的一个分支。
人工智能是对人的意识、思维的信息过程的模拟。人工智能不是一个系统,它可以在系统内部运行,使机器具有执行任务的逻辑能力。人工智能,旨在创造出能像人类一样工作和反应的智能机器。
二、机器学习(machinelearning)——一种实现人工智能的方法机器学习(machinelearning),机器学习可以被定义为人工智能的一个分支或人工智能的具体应用。
在机器学习中,机器具有独立学习的能力,不需要显式编程。这可以让应用程序根据实时场景中的数据进行自我调整。机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。
与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。
三、深度学习(deeplearning)——一种实现机器学习的技术一种基于神经网络的学习方法。深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。
为了更好理解,笔者画了下图来表述它们之间关系。人工智能包括了机器学习和深度学习,机器学习包括了深度学习,他们是子类和父类的关系。