自适应模糊神经网络算法,什么是自适应神经网络

数据挖掘中的神经网络和模糊逻辑的概念是啥?

【神经网络】人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionModel),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。

这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。最常用的就是BP神经网络了,你做数据挖掘SVM也很常用。

【模糊】模糊逻辑指模仿人脑的不确定性概念判断、推理思维方式,对于模型未知或不能确定的描述系统,以及强非线性、大滞后的控制对象,应用模糊集合和模糊规则进行推理,表达过渡性界限或定性知识经验,模拟人脑方式,实行模糊综合判断,推理解决常规方法难于对付的规则型模糊信息问题。

模糊逻辑善于表达界限不清晰的定性知识与经验,它借助于隶属度函数概念,区分模糊集合,处理模糊关系,模拟人脑实施规则型推理,解决因“排中律”的逻辑破缺产生的种种不确定问题。

粗糙集(Roughset,也称粗集)理论是波兰学者2.Pawlak于1982年提出的,它为处理不确切的!不完整的信息提供了一种新的数学工具。

粗糙集理论建立在分类机制的基础之上,将分类理解为特定空间上的等价关系,而等价关系构成了对该空间的划分。该理论将知识理解为对数据的划分,每一划分的集合称为概念。

粗糙集理论的主要思想是在保持信息系统分类能力不变的前提下,利用己知的知识库,将不精确或不确定的知识用知识库中己有的知识来近似刻画,通过知识的补充!约简,导出问题的决策或分类规则。

粗糙集理论与其它处理不确定和不精确问题理论最显著的区别是粗糙集理论无须提供问题所需处理的数据集合之外的任何先验信息,对问题的不确定性的描述或处理比较客观,又由于这个理论未包含处理不精确或不确定原始数据的机制,所以该理论与概率论!模糊数学!证据理论等其它处理不精确或不确定问题的理论有很强的互补性。

粗糙集理论不仅为信息科学和认知科学提供了新的研究方法,而且为智能信息处理提供了有效的处理技术。

目前粗糙集理论己经是人工智能领域方面的一个研究热点,成为数据挖掘应用的主要技术之一,受到各国学者的高度重视。

谷歌人工智能写作项目:神经网络伪原创

神经网络BP模型

一、BP模型概述误差逆传播(ErrorBack-Propagation)神经网络模型简称为BP(Back-Propagation)网络模型AI爱发猫

PallWerbas博士于1974年在他的博士论文中提出了误差逆传播学习算法。完整提出并被广泛接受误差逆传播学习算法的是以Rumelhart和McCelland为首的科学家小组。

他们在1986年出版“ParallelDistributedProcessing,ExplorationsintheMicrostructureofCognition”(《并行分布信息处理》)一书中,对误差逆传播学习算法进行了详尽的分析与介绍,并对这一算法的潜在能力进行了深入探讨。

BP网络是一种具有3层或3层以上的阶层型神经网络。上、下层之间各神经元实现全连接,即下层的每一个神经元与上层的每一个神经元都实现权连接,而每一层各神经元之间无连接。

网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,神经元的激活值从输入层经各隐含层向输出层传播,在输出层的各神经元获得网络的输入响应。

在这之后,按减小期望输出与实际输出的误差的方向,从输入层经各隐含层逐层修正各连接权,最后回到输入层,故得名“误差逆传播学习算法”。

随着这种误差逆传播修正的不断进行,网络对输入模式响应的正确率也不断提高。

BP网络主要应用于以下几个方面:1)函数逼近:用输入模式与相应的期望输出模式学习一个网络逼近一个函数;2)模式识别:用一个特定的期望输出模式将它与输入模式联系起来;3)分类:把输入模式以所定义的合适方式进行分类;4)数据压缩:减少输出矢量的维数以便于传输或存储。

在人工神经网络的实际应用中,80%~90%的人工神经网络模型采用BP网络或它的变化形式,它也是前向网络的核心部分,体现了人工神经网络最精华的部分。

二、BP模型原理下面以三层BP网络为例,说明学习和应用的原理。

1.数据定义P对学习模式(xp,dp),p=1,2,…,P;输入模式矩阵X[N][P]=(x1,x2,…,xP);目标模式矩阵d[M][P]=(d1,d2,…,dP)。

三层BP网络结构输入层神经元节点数S0=N,i=1,2,…,S0;隐含层神经元节点数S1,j=1,2,…,S1;神经元激活函数f1[S1];权值矩阵W1[S1][S0];偏差向量b1[S1]。

输出层神经元节点数S2=M,k=1,2,…,S2;神经元激活函数f2[S2];权值矩阵W2[S2][S1];偏差向量b2[S2]。

学习参数目标误差ϵ;初始权更新值Δ0;最大权更新值Δmax;权更新值增大倍数η+;权更新值减小倍数η-。

2.误差函数定义对第p个输入模式的误差的计算公式为中国矿产资源评价新技术与评价新模型y2kp为BP网的计算输出。

3.BP网络学习公式推导BP网络学习公式推导的指导思想是,对网络的权值W、偏差b修正,使误差函数沿负梯度方向下降,直到网络输出误差精度达到目标精度要求,学习结束。

各层输出计算公式输入层y0i=xi,i=1,2,…,S0;隐含层中国矿产资源评价新技术与评价新模型y1j=f1(z1j),j=1,2,…,S1;输出层中国矿产资源评价新技术与评价新模型y2k=f2(z2k),k=1,2,…,S2。

输出节点的误差公式中国矿产资源评价新技术与评价新模型对输出层节点的梯度公式推导中国矿产资源评价新技术与评价新模型E是多个y2m的函数,但只有一个y2k与wkj有关,各y2m间相互独立。

其中中国矿产资源评价新技术与评价新模型则中国矿产资源评价新技术与评价新模型设输出层节点误差为δ2k=(dk-y2k)·f2′(z2k),则中国矿产资源评价新技术与评价新模型同理可得中国矿产资源评价新技术与评价新模型对隐含层节点的梯度公式推导中国矿产资源评价新技术与评价新模型E是多个y2k的函数,针对某一个w1ji,对应一个y1j,它与所有的y2k有关。

因此,上式只存在对k的求和,其中中国矿产资源评价新技术与评价新模型则中国矿产资源评价新技术与评价新模型设隐含层节点误差为中国矿产资源评价新技术与评价新模型则中国矿产资源评价新技术与评价新模型同理可得中国矿产资源评价新技术与评价新模型4.采用弹性BP算法(RPROP)计算权值W、偏差b的修正值ΔW,Δb1993年德国MartinRiedmiller和HeinrichBraun在他们的论文“ADirectAdaptiveMethodforFasterBackpropagationLearning:TheRPROPAlgorithm”中,提出ResilientBackpropagation算法——弹性BP算法(RPROP)。

这种方法试图消除梯度的大小对权步的有害影响,因此,只有梯度的符号被认为表示权更新的方向。

权改变的大小仅仅由权专门的“更新值”确定中国矿产资源评价新技术与评价新模型其中表示在模式集的所有模式(批学习)上求和的梯度信息,(t)表示t时刻或第t次学习。

权更新遵循规则:如果导数是正(增加误差),这个权由它的更新值减少。如果导数是负,更新值增加。中国矿产资源评价新技术与评价新模型RPROP算法是根据局部梯度信息实现权步的直接修改。

对于每个权,我们引入它的各自的更新值,它独自确定权更新值的大小。

这是基于符号相关的自适应过程,它基于在误差函数E上的局部梯度信息,按照以下的学习规则更新中国矿产资源评价新技术与评价新模型其中0<η-<1<η+。

在每个时刻,如果目标函数的梯度改变它的符号,它表示最后的更新太大,更新值应由权更新值减小倍数因子η-得到减少;如果目标函数的梯度保持它的符号,更新值应由权更新值增大倍数因子η+得到增大。

为了减少自由地可调参数的数目,增大倍数因子η+和减小倍数因子η–被设置到固定值η+=1.2,η-=0.5,这两个值在大量的实践中得到了很好的效果。

RPROP算法采用了两个参数:初始权更新值Δ0和最大权更新值Δmax当学习开始时,所有的更新值被设置为初始值Δ0,因为它直接确定了前面权步的大小,它应该按照权自身的初值进行选择,例如,Δ0=0.1(默认设置)。

为了使权不至于变得太大,设置最大权更新值限制Δmax,默认上界设置为Δmax=50.0。在很多实验中,发现通过设置最大权更新值Δmax到相当小的值,例如Δmax=1.0。

我们可能达到误差减小的平滑性能。5.计算修正权值W、偏差b第t次学习,权值W、偏差b的的修正公式W(t)=W(t-1)+ΔW(t),b(t)=b(t-1)+Δb(t),其中,t为学习次数。

6.BP网络学习成功结束条件每次学习累积误差平方和中国矿产资源评价新技术与评价新模型每次学习平均误差中国矿产资源评价新技术与评价新模型当平均误差MSE<ε,BP网络学习成功结束。

7.BP网络应用预测在应用BP网络时,提供网络输入给输入层,应用给定的BP网络及BP网络学习得到的权值W、偏差b,网络输入经过从输入层经各隐含层向输出层的“顺传播”过程,计算出BP网的预测输出。

8.神经元激活函数f线性函数f(x)=x,f′(x)=1,f(x)的输入范围(-∞,+∞),输出范围(-∞,+∞)。一般用于输出层,可使网络输出任何值。

S型函数S(x)中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围(0,1)。f′(x)=f(x)[1-f(x)],f′(x)的输入范围(-∞,+∞),输出范围(0,]。

一般用于隐含层,可使范围(-∞,+∞)的输入,变成(0,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。

在用于模式识别时,可用于输出层,产生逼近于0或1的二值输出。双曲正切S型函数中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围(-1,1)。

f′(x)=1-f(x)·f(x),f′(x)的输入范围(-∞,+∞),输出范围(0,1]。

一般用于隐含层,可使范围(-∞,+∞)的输入,变成(-1,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。

阶梯函数类型1中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围{0,1}。f′(x)=0。

类型2中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围{-1,1}。f′(x)=0。

斜坡函数类型1中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围[0,1]。中国矿产资源评价新技术与评价新模型f′(x)的输入范围(-∞,+∞),输出范围{0,1}。

类型2中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围[-1,1]。中国矿产资源评价新技术与评价新模型f′(x)的输入范围(-∞,+∞),输出范围{0,1}。

三、总体算法1.三层BP网络(含输入层,隐含层,输出层)权值W、偏差b初始化总体算法(1)输入参数X[N][P],S0,S1,f1[S1],S2,f2[S2];(2)计算输入模式X[N][P]各个变量的最大值,最小值矩阵Xmax[N],Xmin[N];(3)隐含层的权值W1,偏差b1初始化。

情形1:隐含层激活函数f()都是双曲正切S型函数1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];2)计算输入模式X的每个变量的范围均值向量Xmid[N];3)计算W,b的幅度因子Wmag;4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];6)计算W[S1][S0],b[S1];7)计算隐含层的初始化权值W1[S1][S0];8)计算隐含层的初始化偏差b1[S1];9))输出W1[S1][S0],b1[S1]。

情形2:隐含层激活函数f()都是S型函数1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];2)计算输入模式X的每个变量的范围均值向量Xmid[N];3)计算W,b的幅度因子Wmag;4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];6)计算W[S1][S0],b[S1];7)计算隐含层的初始化权值W1[S1][S0];8)计算隐含层的初始化偏差b1[S1];9)输出W1[S1][S0],b1[S1]。

情形3:隐含层激活函数f()为其他函数的情形1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];2)计算输入模式X的每个变量的范围均值向量Xmid[N];3)计算W,b的幅度因子Wmag;4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];6)计算W[S1][S0],b[S1];7)计算隐含层的初始化权值W1[S1][S0];8)计算隐含层的初始化偏差b1[S1];9)输出W1[S1][S0],b1[S1]。

(4)输出层的权值W2,偏差b2初始化1)产生[-1,1]之间均匀分布的S2×S1维随机数矩阵W2[S2][S1];2)产生[-1,1]之间均匀分布的S2×1维随机数矩阵b2[S2];3)输出W2[S2][S1],b2[S2]。

2.应用弹性BP算法(RPROP)学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b总体算法函数:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)(1)输入参数P对模式(xp,dp),p=1,2,…,P;三层BP网络结构;学习参数。

(2)学习初始化1);2)各层W,b的梯度值,初始化为零矩阵。

(3)由输入模式X求第一次学习各层输出y0,y1,y2及第一次学习平均误差MSE(4)进入学习循环epoch=1(5)判断每次学习误差是否达到目标误差要求如果MSE<ϵ,则,跳出epoch循环,转到(12)。

(6)保存第epoch-1次学习产生的各层W,b的梯度值,(7)求第epoch次学习各层W,b的梯度值,1)求各层误差反向传播值δ;2)求第p次各层W,b的梯度值,;3)求p=1,2,…,P次模式产生的W,b的梯度值,的累加。

(8)如果epoch=1,则将第epoch-1次学习的各层W,b的梯度值,设为第epoch次学习产生的各层W,b的梯度值,。

(9)求各层W,b的更新1)求权更新值Δij更新;2)求W,b的权更新值,;3)求第epoch次学习修正后的各层W,b。

(10)用修正后各层W、b,由X求第epoch次学习各层输出y0,y1,y2及第epoch次学习误差MSE(11)epoch=epoch+1,如果epoch≤MAX_EPOCH,转到(5);否则,转到(12)。

(12)输出处理1)如果MSE<ε,则学习达到目标误差要求,输出W1,b1,W2,b2。2)如果MSE≥ε,则学习没有达到目标误差要求,再次学习。

(13)结束3.三层BP网络(含输入层,隐含层,输出层)预测总体算法首先应用Train3lBP_RPROP()学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b,然后应用三层BP网络(含输入层,隐含层,输出层)预测。

函数:Simu3lBP()。1)输入参数:P个需预测的输入数据向量xp,p=1,2,…,P;三层BP网络结构;学习得到的各层权值W、偏差b。

2)计算P个需预测的输入数据向量xp(p=1,2,…,P)的网络输出y2[S2][P],输出预测结果y2[S2][P]。四、总体算法流程图BP网络总体算法流程图见附图2。

五、数据流图BP网数据流图见附图1。

六、实例实例一全国铜矿化探异常数据BP模型分类1.全国铜矿化探异常数据准备在全国铜矿化探数据上用稳健统计学方法选取铜异常下限值33.1,生成全国铜矿化探异常数据。

2.模型数据准备根据全国铜矿化探异常数据,选取7类33个矿点的化探数据作为模型数据。

这7类分别是岩浆岩型铜矿、斑岩型铜矿、矽卡岩型、海相火山型铜矿、陆相火山型铜矿、受变质型铜矿、海相沉积型铜矿,另添加了一类没有铜异常的模型(表8-1)。3.测试数据准备全国化探数据作为测试数据集。

4.BP网络结构隐层数2,输入层到输出层向量维数分别为14,9、5、1。学习率设置为0.9,系统误差1e-5。没有动量项。表8-1模型数据表续表5.计算结果图如图8-2、图8-3。

图8-2图8-3全国铜矿矿床类型BP模型分类示意图实例二全国金矿矿石量品位数据BP模型分类1.模型数据准备根据全国金矿储量品位数据,选取4类34个矿床数据作为模型数据,这4类分别是绿岩型金矿、与中酸性浸入岩有关的热液型金矿、微细浸染型型金矿、火山热液型金矿(表8-2)。

2.测试数据准备模型样本点和部分金矿点金属量、矿石量、品位数据作为测试数据集。3.BP网络结构输入层为三维,隐层1层,隐层为三维,输出层为四维,学习率设置为0.8,系统误差1e-4,迭代次数5000。

表8-2模型数据4.计算结果结果见表8-3、8-4。表8-3训练学习结果表8-4预测结果(部分)续表。

英文文献 高分悬赏!谢谢

本节我们详细介绍硬件的实现。ANFIS控制器目标的实现需要真正具有智能的步进电机。神经模糊方法可以让电机具备适应环境条件变化的能力。

步进电机在配备了这种智能控制器后,就能够按照新的数据来训练自己,更新参数,进而改变自己的行为方式。首先我们要提到的是,ANFIS的实现需要一款能够满足所有数值计算要求的特种微处理器。

按照ANFIS方法论的要求,训练是在自适应网络上完成的,它要用到相关问题变量的时间序列数据。为此,我们选用了“Jstamp”微处理器。

该处理器采用JAVA作为自己的编程语言,拥有512KB的RAM内存和512KB的闪存。图13给出的就是我们在研发工作中使用的Jstamp微处理器。ANFIS实现的总体框架结构如图14所示。

图中为简化起见,我们只给出了九种模糊算法规则中的四种,但它们的结构都是类似的。

从该图中我们也可以感受到ANFIS方法所具备的混合特性,因为它的前向运动采用了最小二乘方法,而后向运动采用的是后向传播算法。

这些算法都是采用JAVA语言实现,它们可以随后下载到Jstamp微处理器中构成控制器。我们还使用了一款微控制器来检测编码器的位置,这就是Ubicom公司的SX28微控制器。

SX28是一种基于闪存和RISC体系结构的。图15是编码器位置检测的连接框图。在本节中,我们将采用仿真和实验的方法对步进电机模糊控制的跟踪和自适应特性进行测试。

首先,我们在图16给出了步进电机对阶跃输入信号的响应(我们用了400个采样点)。图17是使用了ANFIS方法的训练数据和测试数据后的结果。

我们采用20个时间点进行训练,最终误差为0.000001,这对于该项应用是一个非常好的结果。在图18中,我们给出了模糊模型的预测值与系统实际值的对比曲线,二者实际几乎完全重合。

最后,我们在图19给出实际信号与模糊模型预估信号的差异曲线。你是研究自控的?旦愿对你有帮助!

跪求英语翻译帝,高分悬赏!

在这一节,给出了硬件实现的详细说明。需要ANFIS的控制器实现的,真正实现具有智能步进电机的目标。神经模糊的态度,给电机能力,以适应环境变化。

配备智能控制器的一个步进电机将能培养出新的数据,以更新其参数,并因此能够相应地改变其行为。我们必须首先提到的ANFIS的实施需要一个特定的微处理器能够实现所有所需的数值计算。

ANFIS的方法需要进行培训是一个自适应网络上,使用了该问题的相关变量的时间序列数据。出于这个原因,“Jstamp”微处理器被选中。

这个特定的微处理器使用本地编程语言JAVA,并具有512字节的RAM和512KB闪存。在图8我们发现在我们的研究工作中使用的Jstamp微处理器。

在本节中,模糊控制,跟踪和适应性强的特点,适用于步进电机的使用模拟和实验测试。我们首先显示图。9步进电机的响应阶跃输入信号序列(我们用400个样本)。我们在图显示。

10应用ANFIS的方法与训练数据和测试数据的结果。我们用于培训20时代,最终误差为0.000001,这个应用程序是非常好。图11我们绘制模糊模型和系统的实际值预测值,与曲线几乎没有区别。

最后,我们在图显示。12个小区的真正和模糊模型的估计信号之间的差异。我们还比较我们的结果与传统的PID控制器和Mamdani型模糊控制器,多少来衡量的自适应模糊方法可以提高性能。

当然,我们的模糊控制器(ANFIS的设计)是在跟踪和适应性优于其他控制器。

bp神经网络就是模糊神经网络吗

什么是BP神经网络?

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。

经反复学习,最终使误差减小到可接受的范围。具体步骤如下:1、从训练集中取出某一样本,把信息输入网络中。2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。

3、计算网络实际输出与期望输出的误差。4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。

5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。

模糊神经网络的基本形式

模糊神经网络有如下三种形式:1.逻辑模糊神经网络2.算术模糊神经网络3.混合模糊神经网络模糊神经网络就是具有模糊权系数或者输入信号是模糊量的神经网络。上面三种形式的模糊神经网络中所执行的运算方法不同。

模糊神经网络无论作为逼近器,还是模式存储器,都是需要学习和优化权系数的。学习算法是模糊神经网络优化权系数的关键。对于逻辑模糊神经网络,可采用基于误差的学习算法,也即是监视学习算法。

对于算术模糊神经网络,则有模糊BP算法,遗传算法等。对于混合模糊神经网络,目前尚未有合理的算法;不过,混合模糊神经网络一般是用于计算而不是用于学习的,它不必一定学习。

 

你可能感兴趣的:(算法,神经网络,机器学习)