python concatenate fit_关于OpenCV的图像矩阵拼接(Python版本)及numpy.concatenate函数介绍...

功能:给定任意大小的两个图片(矩阵),水平连接成一个图片(矩阵)。高度不同时,使用黑色作为高度较小者的边缘填充,图片垂直居中。

import cv2

import numpy as np

def image_join(image1, image2):

"""

水平合并两个opencv图像矩阵为一个图像矩阵

:param image1:

:param image2:

:return:

"""

h1, w1 = image1.shape[0:2]

h2, w2 = image2.shape[0:2]

if h1 > h2:

margin_height = h1 - h2

if margin_height % 2 == 1:

margin_top = int(margin_height / 2)

margin_bottom = margin_top + 1

else:

margin_top = margin_bottom = int((h1 - h2)/2)

image2 = cv2.copyMakeBorder(image2, margin_top, margin_bottom, 0, 0, cv2.BORDER_CONSTANT, value=[0, 0, 0])

elif h2 > h1:

margin_height = h2 - h1

if margin_height % 2 == 1:

margin_top = int(margin_height / 2)

margin_bottom = margin_top + 1

else:

margin_top = margin_bottom = int(margin_height / 2)

image1 = cv2.copyMakeBorder(image1, margin_top, margin_bottom, 0, 0, cv2.BORDER_CONSTANT, value=[0, 0, 0])

return np.concatenate((image1, image2), axis=1)

顺便介绍一下numpy的concatenate()函数:

def concatenate(arrays, axis=None, out=None):

"""

concatenate((a1, a2, ...), axis=0, out=None)

Join a sequence of arrays along an existing axis.

Parameters

----------

a1, a2, ... : sequence of array_like

The arrays must have the same shape, except in the dimension

corresponding to `axis` (the first, by default).

axis : int, optional

The axis along which the arrays will be joined. If axis is None,

arrays are flattened before use. Default is 0.

out : ndarray, optional

If provided, the destination to place the result. The shape must be

correct, matching that of what concatenate would have returned if no

out argument were specified.

Returns

-------

res : ndarray

The concatenated array.

"""

参数arrays:可接收一个矩阵列表,函数会把说有矩阵依次连接。

参数axis:连接方向(轴向),axis=0时,垂直连接;axis=1时,水平连接;axis=None时,扁平输出,即把二维矩阵中的每个元素横向顺序依次放到一个一维矩阵(列表)中。

参数out:指定时,会把结果放到这个参数中;out=None时,直接把结果返回出去。

最好的说明是官方举例:

"""

Examples

--------

>>> a = np.array([[1, 2], [3, 4]])

>>> b = np.array([[5, 6]])

>>> np.concatenate((a, b), axis=0)

array([[1, 2],

[3, 4],

[5, 6]])

>>> np.concatenate((a, b.T), axis=1)

array([[1, 2, 5],

[3, 4, 6]])

>>> np.concatenate((a, b), axis=None)

array([1, 2, 3, 4, 5, 6]

"""

你可能感兴趣的:(python,concatenate,fit)