The idea of arbitrage underlies the APT. Arbitrage ensures that the same “bundle” of systematic risks sells for the same price.
R ‾ i \overline{R}_i Ri: is expected return, is not a random variable and is not the source of risk.
u i u_i ui: is unexpected shocks and the risk raises from it. The characteristic of u i u_i ui will influences R ‾ i \overline{R}_i Ri
R i = R ‾ i + u i R_i=\overline{R}_i+u_i Ri=Ri+ui
u i = m i + ϵ i u_i=m_i+\epsilon_i ui=mi+ϵi
Systematic risk for asset i i i, m i m_i mi, is then related to unexpected economy-wide shocks (such as unanticipated fluctuations in GNP, inflation, the terms of trade or real interest rates):
m i = β i Y F Y + β i π F π + β i X F X + β i r F r m_i=\beta_{iY}F_Y+\beta_{i\pi}F_{\pi}+\beta_{iX}F_X+\beta_{ir}F_r mi=βiYFY+βiπFπ+βiXFX+βirFr
Systematic risk m i m_i mi cannot be eliminated by holding a diversified portfolio.
In a k k k-factor model we simply use a numerical index to denote each of the systematic risks affecting returns on stock i i i:
R i = R ‾ i + u i = R ‾ i + β i 1 F 1 + β i 2 F 2 + ⋯ + β i k F k + ϵ i R_i=\overline {R}_i+u_i=\overline {R}_i+\beta_{i1}F_1+\beta_{i2}F_2+\dots+\beta_{ik}F_k+\epsilon_i Ri=Ri+ui=Ri+βi1F1+βi2F2+⋯+βikFk+ϵi
Unsystematic risk ϵ i \epsilon_i ϵi can be eliminated by holding a diversified portfolio. For market portfolio x M \pmb x_M xxxM with N N N stocks, ϵ i \epsilon_i ϵi satisfies
V a r ( ∑ i = 1 N x i ϵ i ) = 0 Var(\displaystyle\sum_{i=1}^Nx_i\epsilon_i)=0 Var(i=1∑Nxiϵi)=0
Arbitrage also implies the expected return R ‾ i \overline R_i Ri, on a stock i i i will depend on the β i j \beta_{ij} βij coefficients showing how systematic unexpected shocks F j F_j Fj affect unexpected returns u i = R i − R ‾ i u_i=R_i-\overline{R}_i ui=Ri−Ri.
And the equilibrium returns R ‾ F j \overline R_{F_j} RFj, for bearing “one unit” of each type of systematic shock F j F_j Fj. So we have:
R ‾ i = r + β i 1 [ R ‾ F 1 − r ] + β i 2 [ R ‾ F 2 − r ] + ⋯ + β i k [ R ‾ F k − r ] \overline {R}_i=r+\beta_{i1}[\overline R_{F_1}-r]+\beta_{i2}[\overline R_{F_2}-r]+\dots+\beta_{ik}[\overline R_{F_k}-r] Ri=r+βi1[RF1−r]+βi2[RF2−r]+⋯+βik[RFk−r]
Plug in, we get the Actual Returns under APT:
R i = R ‾ i + β i 1 F 1 + β i 2 F 2 + ⋯ + β i k F k + ϵ i = r + ∑ j = 1 k β i j [ R ‾ F j − r ] + ∑ j = 1 k β i j F j \begin{aligned} R_i&=\overline {R}_i+\beta_{i1}F_1+\beta_{i2}F_2+\dots+\beta_{ik}F_k+\epsilon_i \\ &=r+\displaystyle\sum_{j=1}^k\beta_{ij}[\overline R_{F_j}-r]+\displaystyle\sum_{j=1}^k\beta_{ij}F_j \end{aligned} Ri=Ri+βi1F1+βi2F2+⋯+βikFk+ϵi=r+j=1∑kβij[RFj−r]+j=1∑kβijFj
Question:
(1) How do CAPM and APT models explain systematic risk and unsystematic risk for an asset (or stock) in the stock market respectively?
(2) Are CAPM and APT consistent (or compatible) ? Please show it.
(3) Compare the advantages of APT model over CAPM
(1)
CAPM
R i − r = α i + β i ( R M − r ) + ϵ i R_i-r=\alpha_i+\beta_i(R_M-r)+\epsilon_i Ri−r=αi+βi(RM−r)+ϵi
Term β i ( R M − r ) \beta_i(R_M-r) βi(RM−r) corresponds to the systematic risk, which cannot be diversified.
The error term ϵ i \epsilon_i ϵi corresponds to the unsystematic risk, which satisfies C o v ( ϵ i , R M ) = 0 Cov(\epsilon_i,R_M)=0 Cov(ϵi,RM)=0.
Hence the following decomposition of total risk as measured by the variance is possible:
V a r ( R i ) = β i 2 V a r ( R M ) + V a r ( ϵ i ) Var(R_i)=\beta_i^2Var(R_M)+Var(\epsilon_i) Var(Ri)=βi2Var(RM)+Var(ϵi)
APT
R i = R ‾ i + u i = R ‾ i + m i + ϵ i R_i=\overline {R}_i+u_i=\overline {R}_i+m_i+\epsilon_i Ri=Ri+ui=Ri+mi+ϵi
Systematic risk for asset i i i, m i m_i mi, is then related to unexpected economy-wide shocks.
Systematic risk m i m_i mi cannot be eliminated by holding a diversified portfolio.
In a k k k-factor model we simply use a numerical index to denote each of the systematic risks affecting returns on stock i i i:
R i = R ‾ i + u i = R ‾ i + β i 1 F 1 + β i 2 F 2 + ⋯ + β i k F k + ϵ i R_i=\overline {R}_i+u_i=\overline {R}_i+\beta_{i1}F_1+\beta_{i2}F_2+\dots+\beta_{ik}F_k+\epsilon_i Ri=Ri+ui=Ri+βi1F1+βi2F2+⋯+βikFk+ϵi
- Unsystematic risk ϵ i \epsilon_i ϵi can be eliminated by holding a diversified portfolio. For market portfolio x M \pmb x_M xxxM with N N N stocks, ϵ i \epsilon_i ϵi satisfies
V a r ( ∑ i = 1 N x i ϵ i ) = 0 Var(\displaystyle\sum_{i=1}^Nx_i\epsilon_i)=0 Var(i=1∑Nxiϵi)=0
(2)
Consistent.
The Actual return for asset (or stock) i i i is consistent:
APT holds the equation for expected return:
R ‾ i = r + ∑ i = 1 k β i j [ R ‾ F j − r ] \overline{R}_i=r+\displaystyle\sum_{i=1}^k\beta_{ij}[\overline R_{F_j}-r] Ri=r+i=1∑kβij[RFj−r]
We think CAPM as a special case where there is just one “factor”, namely F M F_M FM (the unanticipated return on a broad-based market portfolio such as S&P 500):
R ‾ i = r + β i M [ R ‾ M − r ] \overline{R}_i=r+\beta_{iM}[\overline R_M-r] Ri=r+βiM[RM−r]
Actual returns in APT model holds the equation:
R i = R ‾ i + ∑ j = 1 k β i j F j + ϵ i = r + ∑ i = 1 k β i j [ R ‾ F j − r ] + ∑ j = 1 k β i j F j + ϵ i R_i=\overline{R}_i+\displaystyle\sum_{j=1}^k\beta_{ij}F_j+\epsilon_i\\ =r+\displaystyle\sum_{i=1}^k\beta_{ij}[\overline R_{F_j}-r]+\displaystyle\sum_{j=1}^k\beta_{ij}F_j+\epsilon_i Ri=Ri+j=1∑kβijFj+ϵi=r+i=1∑kβij[RFj−r]+j=1∑kβijFj+ϵi
This equation extends the CAPM in this case to apply to actual return as opposed to expected return:
R i = R ‾ i + β i M F M + ϵ i = r + β i M [ R ‾ M − r ] + β i M F M + ϵ i = r + β i M [ R ‾ M − r ] + β i M [ R M − R ‾ M ] + ϵ i = r + β i M [ R M − r ] + ϵ i \begin{aligned} R_i&=\overline{R}_i+\beta_{iM}F_M+\epsilon_i\\ &=r+\beta_{iM}[\overline R_M-r]+\beta_{iM}F_M+\epsilon_i\\ &=r+\beta_{iM}[\overline R_M-r]+\beta_{iM}[R_M-\overline R_M]+\epsilon_i\\ &=r+\beta_{iM}[R_M-r]+\epsilon_i \end{aligned} Ri=Ri+βiMFM+ϵi=r+βiM[RM−r]+βiMFM+ϵi=r+βiM[RM−r]+βiM[RM−RM]+ϵi=r+βiM[RM−r]+ϵi
With β i M = β i \beta_{iM}=\beta_i βiM=βi and r = R f r= R_f r=Rf in CAPM, this equation R i = R f + β i + [ R M − R f ] + ϵ i R_i=R_f+\beta_i+[R_M-R_f]+\epsilon_i Ri=Rf+βi+[RM−Rf]+ϵi is just the regression equation used to implement in CAPM.The Expected return for asset (or stock) i i i is consistent:
Conversely, if CAPM is valid, the expected return of asset i i i is given by:
E ( R i ) = R f + β i [ E ( R M ) − R f ] i . e . R ‾ i = r + β i M [ R ‾ M − r ] E(R_i)=R_f+\beta_i[E(R_M)-R_f]\\ i.e.\ \overline R_i=r+\beta_{iM}[\overline R_M-r] E(Ri)=Rf+βi[E(RM)−Rf]i.e. Ri=r+βiM[RM−r]
The expected return for asset i i i according to APT is
R ‾ i = r + ∑ i = 1 k β i j [ R ‾ F j − r ] \overline{R}_i=r+\displaystyle\sum_{i=1}^k\beta_{ij}[\overline R_{F_j}-r] Ri=r+i=1∑kβij[RFj−r]
If CAPM holds, the expected return R ‾ F j \overline R_{F_j} RFj will satisfy:
R ‾ F j = r + β F j M [ R ‾ M − r ] \overline R_{F_j}=r+\beta_{F_jM}[\overline R_M-r] RFj=r+βFjM[RM−r]
Plug in:
R ‾ i = r + ∑ i = 1 k β i j β F j M [ R ‾ M − r ] = r + ( R ‾ M − r ) ∑ i = 1 k β i j β F j M = r + ( R ‾ M − r ) β i M \begin{aligned} \overline{R}_i&=r+\displaystyle\sum_{i=1}^k\beta_{ij}\beta_{F_jM}[\overline R_M-r]\\ &=r+(\overline R_M-r)\displaystyle\sum_{i=1}^k\beta_{ij}\beta_{F_jM}\\ &=r+(\overline R_M-r)\beta_{iM} \end{aligned} Ri=r+i=1∑kβijβFjM[RM−r]=r+(RM−r)i=1∑kβijβFjM=r+(RM−r)βiM
Thus, as long as ∑ i = 1 k β i j β F j M = β i M \displaystyle\sum_{i=1}^k\beta_{ij}\beta_{F_jM}=\beta_{iM} i=1∑kβijβFjM=βiM, R ‾ i = r + β i M ( R ‾ M − r ) \overline{R}_i=r+\beta_{iM}(\overline R_M-r) Ri=r+βiM(RM−r). It’s consistent to the expected return on asset i i i given by CAPM.In conclusion, a k k k factor APT model can be consistent with CAPM if the factors are priced right. CAPM is a special case of APT model.
(3)
⭐Advantages
In contrast to CAPM, the APT:
- allows for multiple risk factors that can vary in relative importance over time; 随时间变化的多因子
- can be used to test information about the types of shocks that lead to market risk; 对引起市场风险的不同类型冲击进行信息检验
- may better predict risk premiums for a project that combines the risks embodied in existing projects. 对现存研究中的风险因素进行组合研究来更好地预测风险溢价
On the other hand:
- CAPM is more closely related to the underlying economic choice - namely, the trade-off between risk and return.平衡风险和收益
- The development of the CAPM enables us to derive the risk return separation theorem.推出风险回报分离定理
- The discussion of efficient sets elucidates (shows) the basic trade-off.有效集阐明了基础平衡
APT vs CAPM (differences)
APT makes no assumption about empirical distribution of asset returns 对资产回报的分布没有经验假设
No assumption of individual’s utility function 没有假设个体效用函数
More than 1 factor 多因子
It is for any subset of securities 证券的子集
No special role for the market portfolio in APT. 没有市场投资组合的角色
Can be easily extended to a multi-period framework. 容易拓展到多阶段的理论框架
Assuming that the rate of return on each of the n n n security is a linear function of k k k factors:
R i = E ( R i ) + b i 1 F 1 + b i 2 F 2 + ⋯ + b i k F k + ϵ i R_i=E(R_i)+b_{i1}F_1+b_{i2}F_2+\dots+b_{ik}F_k+\epsilon_i Ri=E(Ri)+bi1F1+bi2F2+⋯+bikFk+ϵi
where
i = 1 , 2 , … , n i=1,2,\dots ,n i=1,2,…,n
R i R_i Ri and E ( R i ) E(R_i) E(Ri) are the random and expected return rates on the i t h i^{th} ith asset;
b i k b_{ik} bik is the sensitivity of the i t h i^{th} ith asset’s return to the k t h k^{th} kth factor;
F k F_k Fk is the mean zero k t h k^{th} kth factor common to the returns of all assets, C o v ( F k , F h ) = 0 ( k ≠ h ) Cov(F_k,F_h)=0\ (k\neq h) Cov(Fk,Fh)=0 (k=h), k k k factors are not co-related;
ϵ i \epsilon_i ϵi is a random zero mean noise term for the i t h i^{th} ith asset.
Construct an arbitrage portfolio P P P using the above n n n assets:
No wealth:
∑ i = 1 n w i = 0 or e T w = w T e = 0 \displaystyle \sum_{i=1}^{n}w_i=0\ \ \ \text{or}\ \ \ e^Tw=w^Te=0 i=1∑nwi=0 or eTw=wTe=0
w i w_i wi is the weight of security i i i in the portfolio, w T = ( w 1 , w 2 , … , w n ) , e T = ( 1 , 1 , … , 1 ) \pmb w^T=(w_1,w_2,\dots,w_n), \pmb e^T=(1,1,\dots,1) wwwT=(w1,w2,…,wn),eeeT=(1,1,…,1).
Having no risk and earning no return on average.
If P P P is well-diversified portfolio, the return of the arbitrage portfolio R P R_P RP is independent of individual risk of each security:
R P = ∑ i = 1 n w i R i = ∑ i = 1 n w i E ( R i ) + ∑ i = 1 n w i b i 1 F 1 + ∑ i = 1 n w i b i 2 F 2 + ⋯ + ∑ i = 1 n w i b i k F k + ∑ i = 1 n w i ϵ i R_P=\displaystyle \sum_{i=1}^{n}w_i R_i =\displaystyle \sum_{i=1}^{n}w_iE(R_i)+\displaystyle \sum_{i=1}^{n}w_ib_{i1}F_1+\displaystyle \sum_{i=1}^{n}w_ib_{i2}F_2+\dots+\displaystyle \sum_{i=1}^{n}w_ib_{ik}F_k+\displaystyle \sum_{i=1}^{n}w_i\epsilon_i RP=i=1∑nwiRi=i=1∑nwiE(Ri)+i=1∑nwibi1F1+i=1∑nwibi2F2+⋯+i=1∑nwibikFk+i=1∑nwiϵi
To obtain a riskless arbitrage portfolio, one needs to eliminate both diversifiable and nondiversifiable risks:
w i ≈ 1 n , n → ∞ ⇒ ∑ i = 1 n w i b i k = 0 for all factors. ⇒ R P = ∑ i = 1 n w i E ( R i ) = 0 w_i\approx\frac{1}{n},n\to\infty\Rightarrow\displaystyle \sum_{i=1}^{n}w_ib_{ik}=0\ \ \ \text{for all factors.}\\ \Rightarrow R_P=\displaystyle \sum_{i=1}^{n}w_iE(R_i)=0 wi≈n1,n→∞⇒i=1∑nwibik=0 for all factors.⇒RP=i=1∑nwiE(Ri)=0
We have vectors and matrix:
w T = ( w 1 , w 2 , … , w n ) μ T = ( E ( R 1 ) , E ( R 2 ) , … , E ( R n ) ) b = [ 1 b 11 b 12 ⋯ b 1 k 1 b 21 b 22 ⋯ b 2 k ⋮ ⋮ ⋮ ⋱ ⋮ 1 b n 1 b n 2 ⋯ b n k ] \pmb w^T=(w_1,w_2,\dots,w_n)\\ \pmb \mu^T=(E(R_1),E(R_2),\dots,E(R_n))\\ \pmb b = \left[ \begin{matrix} 1& b_{11} &b_{12} &\cdots &b_{1k}\\1&b_{21} &b_{22} &\cdots &b_{2k}\\\vdots &\vdots &\vdots &\ddots &\vdots\\1&b_{n1} &b_{n2} &\cdots &b_{nk}\end{matrix} \right] wwwT=(w1,w2,…,wn)μμμT=(E(R1),E(R2),…,E(Rn))bbb=⎣⎢⎢⎢⎡11⋮1b11b21⋮bn1b12b22⋮bn2⋯⋯⋱⋯b1kb2k⋮bnk⎦⎥⎥⎥⎤
There exists a set of k + 1 k+1 k+1 coefficients λ 0 , λ 1 , … , λ k \lambda_0,\lambda_1,\dots,\lambda_k λ0,λ1,…,λk, i.e. λ T = ( λ 0 , λ 1 , … , λ k ) \pmb \lambda^T=(\lambda_0,\lambda_1,\dots,\lambda_k) λλλT=(λ0,λ1,…,λk) such that
b λ = [ 1 b 11 b 12 ⋯ b 1 k 1 b 21 b 22 ⋯ b 2 k ⋮ ⋮ ⋮ ⋱ ⋮ 1 b n 1 b n 2 ⋯ b n k ] [ λ 0 λ 1 ⋮ λ k ] = [ λ 0 + λ 1 b 11 + ⋯ + λ k b 1 k λ 0 + λ 1 b 21 + ⋯ + λ k b 2 k ⋮ λ 0 + λ 1 b n 1 + ⋯ + λ k b n k ] = [ E ( R 1 ) E ( R 2 ) ⋮ E ( R n ) ] = μ \begin{aligned} \pmb b\pmb \lambda=\left[ \begin{matrix} 1& b_{11} &b_{12} &\cdots &b_{1k}\\1&b_{21} &b_{22} &\cdots &b_{2k}\\\vdots &\vdots &\vdots &\ddots &\vdots\\1&b_{n1} &b_{n2} &\cdots &b_{nk}\end{matrix} \right] \left[ \begin{matrix} \lambda_0\\\lambda_1\\\vdots \\\lambda_k\end{matrix} \right]= \left[ \begin{matrix} \lambda_0+\lambda_1b_{11}+\dots+\lambda_kb_{1k}\\\lambda_0+\lambda_1b_{21}+\dots+\lambda_kb_{2k}\\\vdots \\\lambda_0+\lambda_1b_{n1}+\dots+\lambda_kb_{nk}\end{matrix} \right]= \left[ \begin{matrix} E(R_1)\\E(R_2)\\\vdots \\E(R_n)\end{matrix} \right]= \pmb \mu \end{aligned} bbbλλλ=⎣⎢⎢⎢⎡11⋮1b11b21⋮bn1b12b22⋮bn2⋯⋯⋱⋯b1kb2k⋮bnk⎦⎥⎥⎥⎤⎣⎢⎢⎢⎡λ0λ1⋮λk⎦⎥⎥⎥⎤=⎣⎢⎢⎢⎡λ0+λ1b11+⋯+λkb1kλ0+λ1b21+⋯+λkb2k⋮λ0+λ1bn1+⋯+λkbnk⎦⎥⎥⎥⎤=⎣⎢⎢⎢⎡E(R1)E(R2)⋮E(Rn)⎦⎥⎥⎥⎤=μμμ
w T μ = ( w 1 , w 2 , … , w n ) [ λ 0 + λ 1 b 11 + ⋯ + λ k b 1 k λ 0 + λ 1 b 21 + ⋯ + λ k b 2 k ⋮ λ 0 + λ 1 b n 1 + ⋯ + λ k b n k ] = w 1 ( λ 0 + λ 1 b 11 + ⋯ + λ k b 1 k ) + w 2 ( λ 0 + λ 1 b 21 + ⋯ + λ k b 2 k ) + ⋯ + w n ( λ 0 + λ 1 b n 1 + ⋯ + λ k b n k ) = λ 0 ∑ i = 1 n w i + λ 1 ∑ i = 1 n w i b i 1 + ⋯ + λ k ∑ i = 1 n w i b i k = 0 \begin{aligned} \pmb w^T\pmb \mu&=(w_1,w_2,\dots,w_n)\left[ \begin{matrix} \lambda_0+\lambda_1b_{11}+\dots+\lambda_kb_{1k}\\\lambda_0+\lambda_1b_{21}+\dots+\lambda_kb_{2k}\\\vdots \\\lambda_0+\lambda_1b_{n1}+\dots+\lambda_kb_{nk}\end{matrix} \right]\\ &=w_1(\lambda_0+\lambda_1b_{11}+\dots+\lambda_kb_{1k})+w_2(\lambda_0+\lambda_1b_{21}+\dots+\lambda_kb_{2k})+\dots+w_n(\lambda_0+\lambda_1b_{n1}+\dots+\lambda_kb_{nk})\\ &=\lambda_0\displaystyle\sum_{i=1}^n w_i+\lambda_1\displaystyle\sum_{i=1}^n w_ib_{i1}+\dots+\lambda_k\displaystyle\sum_{i=1}^n w_ib_{ik}=0 \end{aligned} wwwTμμμ=(w1,w2,…,wn)⎣⎢⎢⎢⎡λ0+λ1b11+⋯+λkb1kλ0+λ1b21+⋯+λkb2k⋮λ0+λ1bn1+⋯+λkbnk⎦⎥⎥⎥⎤=w1(λ0+λ1b11+⋯+λkb1k)+w2(λ0+λ1b21+⋯+λkb2k)+⋯+wn(λ0+λ1bn1+⋯+λkbnk)=λ0i=1∑nwi+λ1i=1∑nwibi1+⋯+λki=1∑nwibik=0
We have E ( R i ) = λ 0 + λ 1 b i 1 + ⋯ + λ k b i k E(R_i)=\lambda_0+\lambda_1b_{i1}+\dots+\lambda_kb_{ik} E(Ri)=λ0+λ1bi1+⋯+λkbik satisfying ∑ i = 1 n w i E ( R i ) = w T μ = 0 \displaystyle \sum_{i=1}^{n}w_iE(R_i)=\pmb w^T\pmb \mu=0 i=1∑nwiE(Ri)=wwwTμμμ=0. See λ 0 \lambda_0 λ0 as risk-free return, i.e. λ 0 = R f \lambda_0=R_f λ0=Rf, so we have
E ( R i ) = R f + λ 1 b i 1 + ⋯ + λ k b i k E(R_i)=R_f+\lambda_1b_{i1}+\dots+\lambda_kb_{ik} E(Ri)=Rf+λ1bi1+⋯+λkbik
Specifically, if one factor portfolio only depends on factor 1 ( F 1 F_1 F1), then
E ( R 1 ) = R f + 1 ⋅ λ 1 ⇒ λ 1 = E ( R 1 ) − R f E(R_1)=R_f+1\cdot\lambda_1\Rightarrow \lambda_1=E(R_1)-R_f E(R1)=Rf+1⋅λ1⇒λ1=E(R1)−Rf
Similarly,
λ 2 = E ( R 2 ) − R f … λ k = E ( R k ) − R f \lambda_2=E(R_2)-R_f\\ \dots\\ \lambda_k=E(R_k)-R_f λ2=E(R2)−Rf…λk=E(Rk)−Rf
Therefore,
E ( R i ) = R f + b i 1 [ E ( R 1 ) − R f ] + ⋯ + b i k [ E ( R k ) − R f ] E(R_i)=R_f+b_{i1}[E(R_1)-R_f]+\dots+b_{ik}[E(R_k)-R_f] E(Ri)=Rf+bi1[E(R1)−Rf]+⋯+bik[E(Rk)−Rf]