最大后验估计(MAP)

最大后验估计(maximum a posteriori probability estimate, 简称MAP)

与最大似然估计类似,但是,在似然函数后面多乘了一项,即“待估计参数的先验分布”。故最大后验估计可以看作规则化的最大似然估计。

根据贝叶斯理论,对于θ的后验分布:
这里写图片描述
后验分布的目标为:
这里写图片描述
(分母这里写图片描述为f(x),是固定值)

MAP认为,θ是一个随机变量,其先验概率密度函数是已知的,为P(θ),所以其目标为:
这里写图片描述

MLE认为,θ是非随机变量或者分布未知的随机变量,这两种情况都可以认为P(θ)均匀分布的,即该概率是一个固定值,P(θ)=C,所以其目标为:
这里写图片描述

转载:http://www.cnblogs.com/liliu/archive/2010/11/24/1886110.html

注:最大后验估计可以看做贝叶斯估计的一种特定形式。

举例来说:

假设有五个袋子,各袋中都有无限量的饼干(樱桃口味或柠檬口味),已知五个袋子中两种口味的比例分别是

樱桃 100%

樱桃 75% + 柠檬 25%

樱桃 50% + 柠檬 50%

樱桃 25% + 柠檬 75%

柠檬 100%

如果只有如上所述条件,那问从同一个袋子中连续拿到2个柠檬饼干,那么这个袋子最有可能是上述五个的哪一个?

  我们首先采用最大似然估计来解这个问题,写出似然函数。假设从袋子中能拿出柠檬饼干的概率为p(我们通过这个概率p来确定是从哪个袋子中拿出来的),则似然函数可以写作

由于p的取值是一个离散值,即上面描述中的0,25%,50%,75%,1。我们只需要评估一下这五个值哪个值使得似然函数最大即可,得到为袋子5。这里便是最大似然估计的结果。

上述最大似然估计有一个问题,就是没有考虑到模型本身的概率分布,下面我们扩展这个饼干的问题。

假设拿到袋子1或5的机率都是0.1,拿到2或4的机率都是0.2,拿到3的机率是0.4,那同样上述问题的答案呢?这个时候就变MAP了。我们根据公式

写出我们的MAP函数。

根据题意的描述可知,p的取值分别为0,25%,50%,75%,1,g的取值分别为0.1,0.2,0.4,0.2,0.1.分别计算出MAP函数的结果为:0,0.0125,0.125,0.28125,0.1.由上可知,通过MAP估计可得结果是从第四个袋子中取得的最高。

上述都是离散的变量,那么连续的变量呢?假设为独立同分布的,μ有一个先验的概率分布为。那么我们想根据来找到μ的最大后验概率。根据前面的描述,写出MAP函数为:

此时我们在两边取对数可知。所求上式的最大值可以等同于求

的最小值。求导可得所求的μ为

以上便是对于连续变量的MAP求解的过程。

在MAP中我们应注意的是:

MAP与MLE最大区别是MAP中加入了模型参数本身的概率分布,或者说。MLE中认为模型参数本身的概率的是均匀的,即该概率为一个固定值。

你可能感兴趣的:(最大后验估计(MAP))