- 聊聊Python都能做些什么
·零落·
Python入门到掌握python开发语言
文章目录一、Python简介二、Python都能做些什么1.Web开发2.数据分析和人工智能3.自动化运维和测试4.网络爬虫5.金融科技三、Python开源库都有哪些1.Web开发2.数据分析和科学计算3.机器学习和深度学习4.网络爬虫5.自动化和测试6.其他常用库四、相关链接一、Python简介Python是一种解释型、面向对象、动态数据类型的高级程序设计语言。它最初由GuidovanRossu
- 基于改进ISODATA算法的负荷场景曲线聚类(matlab代码)
电力程序小学童
聚类matlabISODATA算法风电光伏
目录1主要内容聚类中心选取步骤核方法2部分代码3程序结果4程序链接1主要内容程序复现文献《基于机器学习的短期电力负荷预测和负荷曲线聚类研究》第三章《基于改进ISODATA算法的负荷场景曲线聚类》模型,该方法不止适用于负荷聚类,同样适用于风光等可再生能源聚类,只需要改变聚类的数据即可,该方法的通用性和可创新性强。该代码实现一种基于改进ISODATA算法的负荷场景曲线聚类方法,代码中,主要做了四种聚类
- 《基于机器学习的负荷曲线聚类算法对比与改进:K-L-isodata的创新性研究》
TWHiwhjig
机器学习算法聚类
基于机器学习的负荷曲线聚类包括kmeansisodata和改进的L-isodata以及在其基础上再次进行改进的K-L-isodata(有创新性),四者通过评价指标进行了对比精品代码可修改性极高有参考文献ID:93150688324967700自律的电气人基于机器学习的负荷曲线聚类是一种基于数据分析和模式识别的技术,它可以帮助我们对系统的负荷变化进行分类和理解。在负荷曲线聚类的研究中,K-means
- 动态规划-第4篇
藤椒味的火腿肠真不错
动态规划算法
19.最⼤⼦数组和(medium)1.题⽬链接:53.最大子数组和-力扣(LeetCode)2..解法(动态规划):算法思路:1.状态表⽰:对于线性dp,我们可以⽤「经验+题⽬要求」来定义状态表⽰:i.以某个位置为结尾,巴拉巴拉;ii.以某个位置为起点,巴拉巴拉。这⾥我们选择⽐较常⽤的⽅式,以「某个位置为结尾」,结合「题⽬要求」,定义⼀个状态表⽰:dp[i]表⽰:以i位置元素为结尾的「所有⼦数组」
- 机器学习Pandas_learn4
XW-ABAP
机器学习机器学习pandas人工智能
importpandasaspddefcalculate_goods_covariance():#定义商品销售数据字典goods_sales_data={"时期":["一期","二期","三期","四期"],"苹果":[15,16,3,2],"橘子":[12,14,16,18],"石榴":[11,8,7,1]}#将字典转换为DataFrame对象goods_dataframe=pd.DataFra
- Browser Use开启AI辅助网页操作新时代
CodeJourney.
python人工智能算法数据库
在当今数字化时代,人们的工作和生活与互联网紧密相连。每天,我们都要花费大量时间在各类网站之间穿梭,进行诸如填写表单、查询信息、比价等重复性操作。这些工作不仅耗费精力,还容易因疲劳而出错,严重影响了工作效率。而现有的自动化工具,要么需要掌握专业的编程知识才能使用,要么在功能上存在局限性,让普通技术用户望而却步。不过,随着人工智能技术的飞速发展,一款名为BrowserUse的开源项目应运而生,为我们带
- 光学工程师中年危机
光学设计培训
激光雷达光学设计zemax光学光学工程
一、技术能力突围:向高价值领域迁移瞄准增量市场激光雷达与自动驾驶:将光学设计经验迁移至激光雷达光路优化(如VCSEL阵列准直算法)、热稳定性补偿算法(解决车载环境温度漂移问题)15。AR/VR光学模组:参与超表面透镜(Metasurface)设计,结合波导与全息技术提升显示效率,掌握LightTools或LucidShape光场仿真37。强化算法能力光学-算法交叉技能:从
- P11451 [USACO24DEC] It‘s Mooin‘ Time B(枚举算法)
爱干饭的boy
算法竞赛题目超详细解析算法c语言c++青少年编程贪心算法推荐算法
题目描述FarmerJohn正在试图向Elsie描述他最喜欢的USACO竞赛,但她很难理解为什么他这么喜欢它。他说「竞赛中我最喜欢的部分是Bessie说『现在是哞哞时间』并在整个竞赛中一直哞哞叫」。Elsie仍然不理解,所以FarmerJohn将竞赛以文本文件形式下载,并试图解释他的意思。竞赛被定义为一个长度为$N$($3≤N≤20000$)的小写字母字符串。一种哞叫一般地定义为子串$c_ic_j
- 高亮动态物体——前景提取与动态物体检测器(opencv实现)
WenJGo
AI学习之路Python之路opencv计算机视觉人工智能深度学习神经网络
目录代码说明1.导入库2.创建背景建模对象3.打开视频源4.逐帧处理视频5.应用背景建模获得前景掩码6.形态学操作去除噪声6.1定义形态学核6.2开运算去除噪点6.3膨胀操作填补前景区域空洞7.轮廓检测识别动态物体8.绘制轮廓和边界框9.显示处理结果10.退出控制与资源释放整体代码效果展示代码说明主要功能是通过背景建模检测视频中的运动目标。其工作流程如下:读取视频帧;利用MOG2算法生成前景掩码;
- ChatGPT + Vue3:如何打造 AI 智能助手?
Js_x
chatgpt人工智能
引言人工智能(AI)正快速渗透到前端开发领域,越来越多的开发者希望将ChatGPT集成到自己的应用中,为用户提供智能对话、自动回复、辅助决策等功能。本文将介绍如何使用Vue3+OpenAIAPI搭建一个AI智能助手,让你的应用拥有强大的AI交互能力。1.项目准备1.1技术栈选择本项目将使用以下技术:Vue3-现代化的前端框架,响应式强,适合构建交互式应用。Vite-高效的Vue3项目构建工具,提升
- 用 AI 提高开发效率:自动生成代码、优化 SQL 查询、写测试用例
Js_x
人工智能sql测试用例
引言人工智能(AI)正在深刻改变软件开发行业。从代码自动补全到SQL查询优化,再到自动化测试,AI工具已经成为开发者提高生产力的重要助手。本文将介绍ChatGPT、GitHubCopilot、Tabnine等AI编程工具的实际应用,帮助开发者更高效地编写代码、优化数据库查询,并自动生成测试用例。1.AI代码生成:提升开发效率1.1ChatGPT代码生成ChatGPT具备强大的自然语言处理能力,可以
- 蓝桥杯Python赛道备赛——Day8:动态规划(基础)案例分析
SKY YEAM
蓝桥杯备赛蓝桥杯python动态规划
本博客就上一期中讨论的蓝桥杯动态规划基础问题(包括:递推、记忆化搜索、最长公共子序列和最长上升子序列),给出了六个常见的案例问题。每一个问题都给出了其求解方法的示例代码,以供低年级师弟师妹们学习和练习。如有不懂,欢迎在评论区提问。前序知识:(1)Python基础语法(2)Day1:基础算法(3)Day7:动态规划(基础)动态规划(基础)案例分析一、递推应用:爬楼梯问题二、递推应用:零钱兑换三、记忆
- 如何使用Python对Excel、CSV文件完成数据清洗与预处理?
Python 集中营
python数据分析应用pythonexcel开发语言
在数据分析和机器学习项目中,数据清洗与预处理是不可或缺的重要环节。现实世界中的数据往往是不完整、不一致且含有噪声的,这些问题会严重影响数据分析的质量和机器学习模型的性能。Python作为一门强大的编程语言,提供了多种库和工具来帮助我们高效地完成数据清洗与预处理任务,其中最常用的库包括Pandas、NumPy、SciPy等。本文将详细介绍如何使用Python对Excel和CSV格式的数据文件进行清洗
- 思维链在可控核聚变等离子体控制中的应用:AI驱动的能源革命
AI大模型应用之禅
DeepSeek人工智能能源ai
概述《思维链在可控核聚变等离子体控制中的应用:AI驱动的能源革命》旨在探讨AI技术在可控核聚变等离子体控制中的实际应用,以及如何通过思维链实现能源革命。本文将从以下几个方面展开讨论:核聚变等离子体控制背景、思维链技术介绍、AI在等离子体控制中的应用、算法原理与实现、系统设计与实现、项目实战以及最佳实践与展望。一、核聚变等离子体控制背景核聚变是一种通过将轻原子核在高温高压下聚合成更重的原子核,释放出
- AI 创业团队:技术人才与商业人才的完美搭配
yaxin0765
人工智能
目录一、技术人才的核心价值二、商业人才的关键作用三、实现完美搭配的策略在AI创业的赛道上,一个优秀的团队是决定企业成败的关键因素。而在这个团队中,技术人才与商业人才的完美搭配,如同鸟之双翼、车之两轮,缺一不可。他们各自发挥独特优势,相互协作,共同推动AI创业企业驶向成功的彼岸。一、技术人才的核心价值奠定技术根基:技术人才是AI创业企业的技术基石。他们精通各类AI算法、编程语言和开发框架,能够搭建起
- 理解深度学习1-简介
shangjg3
PyTorch深度学习实战深度学习人工智能
人工智能(AI)旨在打造模仿智能行为的系统。它覆盖了众多方法,涵盖了基于逻辑、搜索和概率推理的技术。机器学习是AI的一个分支,它通过对观测数据进行数学模型拟合来学习决策制定。这个领域近年来迅猛发展,现在几乎(虽不完全准确)与AI同义。深度神经网络是一类机器学习模型,将其应用到数据上的过程称为深度学习。目前,深度网络是最强大和最实用的机器学习模型之一,常见于日常生活中。我们常常用自然语言处理(Nat
- 使用 CryptoJS 实现 AES 解密:动态数据解密示例
木觞清
javascript
在现代加密应用中,AES(高级加密标准)是一种广泛使用的对称加密算法。它的安全性高、效率好,适合用于各种加密任务。今天,我们将通过一个实际的示例,展示如何使用CryptoJS实现AES解密,解密动态数据。CryptoJS是一个基于JavaScript的加密库,它支持AES、DES等多种常见的加密算法。本文将详细介绍如何使用CryptoJS解密AES加密的数据。1.引入CryptoJS库首先,确保你
- 人工智能专业毕业设计选题清单:热点课题推荐
HaiLang_IT
人工智能算法python
目录前言毕设选题开题指导建议更多精选选题选题帮助最后前言大家好,这里是海浪学长毕设专题!大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理了人工智能专业最新精选选题,如遇选题困难或选题有任何疑问,都可以问学长哦(见文末)!对毕设有任何疑问都可以问学长哦!更多选题指导:最新最全计算机专业毕设选题精选推荐汇
- MySQL算法篇(一)
先睡
算法
Hash算法,也称为哈希算法或散列算法,是一种将任意长度的输入(如文本、图片等)通过某种规则转换成固定长度的输出的算法。这个输出通常被称为哈希值、哈希码或哈希摘要。以下是一些关于哈希算法的关键点:不可逆性:理论上,从哈希值不能逆向推导出原始输入数据。确定性:对于同一个输入,无论何时何地使用相同的哈希算法,都会得到相同的哈希值。快速计算:哈希算法通常设计得非常高效,可以快速计算出哈希值。抗冲突性:不
- 基于生成对抗网络(GAN)的图像超分辨率实战:从SRGAN到ESRGAN
Evaporator Core
#深度学习强化学习生成模型生成对抗网络人工智能神经网络
图像超分辨率(ImageSuper-Resolution)是一种通过算法将低分辨率图像转换为高分辨率图像的技术,广泛应用于医学影像、卫星图像和视频增强等领域。生成对抗网络(GAN)是图像超分辨率的经典方法,而增强型超分辨率生成对抗网络(ESRGAN)则通过引入残差网络和感知损失进一步提升了图像质量。本文将通过一个完整的实战案例,展示如何使用SRGAN和ESRGAN进行图像超分辨率,并提供详细的代码
- RAG问答系统:检索增强生成框架
ZhangJiQun&MXP
2021论文教学大模型语言模型
目录RAG(Retrieval-AugmentedGeneration)框架一、RAG框架的定义二、RAG框架的工作原理三、RAG框架的举例说明四、RAG框架的优势RAG问答系统二、工作流程三、优势四、应用场景RAG(Retrieval-AugmentedGeneration)框架即检索增强生成框架,是一种结合了信息检索技术与语言生成模型的人工智能技术。以下是对RAG框架的详细解释及举例说明:一、
- 我的创作纪念日
Eqwaak00
微服务
一周年的技术创作之旅:从「挖钻石」到探索未知的星辰大海一年前的今天,我在键盘上敲下了第一篇技术博客——《我的世界》钻石挑战,用代码教会AI挖矿。那时的心情,像极了游戏中第一次挥动镐子的新手:既兴奋又忐忑。如今回望这365天,技术创作早已成为我生活中不可或缺的一部分,它不仅是记录,更是成长的见证。技术成长:从工具人到造物者这一年,我从一个只会调用API的“工具人”,逐渐蜕变为能设计算法、优化系统的开
- 【Java】已解决:`java.sql.SQLSyntaxErrorException: SQL`
屿小夏
javasql开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- c语言笔记 结构体内嵌套结构体的表示方式
我是大咖
笔记
目录结构体内嵌套结构体问:我们都该如何去访问该结构体里面的结构体的成员呢?怎么去给里面的成员赋值呢?说明:运行上述代码后,输出结果如下:结构体内嵌套结构体背景:如果我们在结构体中放结构体,我们可以不写结构体里面结构体的结构体标签,但是我们可以定义结构体里面结构体的变量,定义里面结构体定义变量与不定义变量的表示方式。问:我们都该如何去访问该结构体里面的结构体的成员呢?怎么去给里面的成员赋值呢?如果是
- AIGC带来数据革命:R语言如何成为数据科学家的秘密武器?
程序边界
AIGCr语言开发语言
文章目录一、R语言的基础特性1.1R语言的起源与发展1.2R语言的核心优势二、R语言在AIGC中的应用场景2.1数据预处理与清洗2.2文本分析与生成2.3机器学习与模型构建2.4数据可视化与报告生成三、R语言在AIGC中的具体案例3.1金融数据分析与预测3.2医疗数据分析与建模3.3社交媒体数据分析与情感分析四、R语言在AIGC中的未来展望4.1与深度学习框架的集成4.2与云计算平台的集成4.3与
- PyTorch 深度学习实战(12):Actor-Critic 算法与策略优化
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们介绍了强化学习的基本概念,并使用深度Q网络(DQN)解决了CartPole问题。本文将深入探讨Actor-Critic算法,这是一种结合了策略梯度(PolicyGradient)和值函数(ValueFunction)的强化学习方法。我们将使用PyTorch实现Actor-Critic算法,并应用于经典的CartPole问题。一、Actor-Critic算法基础Actor-Cri
- PyTorch 深度学习实战(17):Asynchronous Advantage Actor-Critic (A3C) 算法与并行训练
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们深入探讨了SoftActor-Critic(SAC)算法及其在平衡探索与利用方面的优势。本文将介绍强化学习领域的重要里程碑——AsynchronousAdvantageActor-Critic(A3C)算法,并展示如何利用PyTorch实现并行化训练来加速学习过程。一、A3C算法原理A3C算法由DeepMind于2016年提出,通过异步并行的多个智能体(Worker)与环境交互
- 全网测评:2025年最值得中小企业入局的AI无人直播软件花落谁家?
V_13135861102
人工智能
全网测评:2025年最值得中小企业入局的AI无人直播软件花落谁家?在数字化时代,人工智能技术的快速发展为各行各业带来了深刻的变革。直播电商领域也迎来了前所未有的机遇,AI无人直播软件应运而生,逐步改变着传统电商和直播行业的运营模式。对于预算有限、希望实现高效营销的中小企业而言,选择一款合适的AI无人直播软件显得尤为重要。本文将测评几款热门的AI无人直播软件,帮助中小企业找到最适合自己的入局之选。一
- 谷粒商城学习笔记,第七天:性能压测+缓存+分布式锁
「已注销」
数据库分布式redisjava多线程
谷粒商城学习笔记,第七天:性能压测+缓存+分布式锁一、性能压测我们希望通过压测发现其他测试更难发现的错误:内存泄漏、并发与同步。1、性能指标吞吐量、响应时间QPSTPS、错误率RT:ResponseTime响应时间HPS:hitspersecond每秒点击次数TPS:Transactionpersecond系统每秒处理交易数QPS:querypersecond每秒处理查询次数2、JMeter下载地
- Day03_谷粒商城(谷粒商城高级篇二)摘要
BlackTurn
项目总结
文章目录笔记P102—P124是讲解ES的知识,和谷粒商城项目完全无关P125—P127是讲解SpringBoot整合ESP128—P129商品上架功能0P130商品上架功能1P131商品上架功能2P132商品上架功能3P133商品上架功能4P134—P135商品上架功能—测试P136—P138首页展示一级、二级、三级目录P139nginx搭建域名访问环境1P140nginx搭建域名访问环境1P1
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR