- 深度学习主流开源框架:Caffe、TensorFlow、Pytorch、Theano、Keras、MXNet、Chainer
seasonsyy
深度学习小知识深度学习开源框架pytorch
2.6深度学习主流开源框架表2.1深度学习主流框架参数对比框架关键词总结框架关键词基本数据结构(都是高维数组)Caffe“在工业中应用较为广泛”,“编译安装麻烦一点”BlobTensorFlow“安装简单pip”TensorPytorch“定位:快速实验研究”,“简单”,“灵活”TensorTheanoד用于处理大规模神经网络的训练”,“不支持移动设备”,“不能应用于工业环境”,“编译复杂模型时
- onnx基础
whyte王
python
初次编辑时间:2024/2/7;最后编辑时间:2024/2/12定义:ONNX(OpenNeuralNetworkExchange)是一种开放式的文件格式,用于存储训练好的机器学习模型。它使得不同的人工智能框架(如PyTorch、MXNet、Tensorflow)可以采用相同格式存储模型数据并交互。Basic当我们加载了一个ONNX之后,我们获得的就是一个ModelProto,它包含了一些版本信息
- MxNet源码解析(1) KVStore,pslite源码解析
Junr_0926
1.前言从毕业开始工作已经两个多月,这期间相当一部分的时间都用在了对MxNet的学习上,而在MxNet的众多部分中,又是pslite这一部分接触最多。因此,今天将我一直以来的学习过程中的心得和收获总结在这里,也为以后对MxNet的继续学习做一个铺垫2.MxNet构成MxNet作为一个深度学习框架,它最大的特点应该是分布式训练的支持了。从初次接触MxNet到现在的两个多月里,我认为MxNet主要有以
- 人脸识别数据集整理
想努力的人
人脸识别深度学习人工智能计算机视觉
转自:人脸识别数据集整理-陈晓涛-博客园insightface提供整理了mtcnn裁剪112x112,mxnet二进制方式保存的数据集https://github.com/deepinsight/insightface/wiki/Dataset-Zoo人脸识别训练数据集:CASIA-Webface(10Kids/0.5Mimages)CASIAWebFaceDataset是一个大规模人脸数据集,主
- 深度学习-随机梯度下降
白云如幻
PyTorch深度学习机器学习算法人工智能
在训练过程中使用随机梯度下降,但没有解释它为什么起作用。为了澄清这一点,将继续更详细地说明随机梯度下降(stochasticgradientdescent)。%matplotlibinlineimportmathfrommxnetimportnp,npxfromd2limportmxnetasd2lnpx.set_np()随机梯度更新在深度学习中,目标函数通常是训练数据集中每个样本的损失函数的平均
- 动手学深度学习(二)——正则化(从零开始)
SnailTyan
文章作者:Tyan博客:noahsnail.com|CSDN|注:本文为李沐大神的《动手学深度学习》的课程笔记!高维线性回归使用线性函数$y=0.05+\sum_{i=1}^p0.01x_i+\text{noise}$生成数据样本,噪音服从均值0和标准差为0.01的正态分布。#导入mxnetimportrandomimportmxnetasmx#设置随机种子random.seed(2)mx.ran
- 2023-2024深度学习框架之争——选pytorch还是tensorflow?
NCHU-Net
人工智能人工智能深度学习pytorchtensorflow
深度学习是人工智能领域的一个重要分支,它利用多层神经网络来模拟人类的学习和推理能力,解决各种复杂的问题,如图像识别、自然语言处理、语音识别、推荐系统等。深度学习框架是一种软件工具,它提供了构建、训练、测试和部署深度学习模型的便利,使得开发者和研究者可以更高效地进行深度学习的开发和应用。目前,市场上有许多不同的深度学习框架,如PyTorch、TensorFlow、Keras、MXNet、Caffe2
- mxnet版本与numpy,requests等都不兼容问题
Bian~
numpymxnetpython
简介跟着李沐学AI时遇到的mxnet环境问题。问题使用pipinstallmxnet时会重新安装相匹配的numpy和requests,而这新安装的这两个版本不满足d2l所需的版本。然后报错:ERROR:pip'sdependencyresolverdoesnotcurrentlytakeintoaccountallthepackagesthatareinstalled.Thisbehaviouri
- 初学AI-动手安装mxnet
小白天天向上
mxnet人工智能深度学习
最近看到网络上介绍的《动手学深度学习》,感觉是一本理论结合实际的好书。参考链接如下:《动手学深度学习》—动手学深度学习2.0.0documentation心痒之下开始动手安装,没想到花费自己两天实际搞明白如何安装。以下记录自己的心路历程,哈哈。书上介绍的第一步安装Minicoda,其实也可以安装Anacoda,不影响后面的MXNET安装。书上没有介绍MXNET的运行环境,实际上MXNET只能运行在
- Mxnet导出onnx模型
上单之光
模型部署mxnet人工智能深度学习
Mxnet导出onnx模型requirementsmxnet==1.9.1python3.8+onnxsim导出模型importosimportmxnetasmximportnumpyasnpimportonnxfromonnximportcheckerfrommxnet.onnximportexport_modelfrommxnet.gluon.model_zooimportvisionfrom
- mxnet和numpy版本对应
Edison/
pythonmxnet
关于安装mxnet与numpy版本冲突解决方法下载anaconda32019.7python3.7版本mxnet1.6.0版本numpy1.16.x成功运行
- 安装mxnet详细版
江江酱₍ᐢ..ᐢ₎♡
mxnet人工智能深度学习pythonpipcondaipython
一、mxnet简介MXNet是一个开源的深度学习框架,由亚马逊公司发起并维护。它支持多种编程语言,包括Python、C++、R、Scala等,可以在CPU、GPU和分布式环境下运行。MXNet提供了丰富的神经网络层和优化算法,可以用于各种深度学习任务,如图像分类、目标检测、语音识别等。同时,MXNet还具有高效、灵活、易用等特点,受到了广泛的关注和应用。二、安装过程及遇到的困难步骤一:直接Win+
- 【避免踩坑+报错】Python mxnet包成功安装指南
_普
mxnet人工智能深度学习python经验分享
一.确保已经安装Anaconda二.打开root环境控制台,执行【mxnet】包相关安装指令。1.创建python3.7.0环境condacreate-nnamepython=3.7.0【测试mxnet在python3.7.0x以上版本使用大概率会报错,这里使用低版本python环境】ps:如果在这一步创建环境报错可以考虑卸载【Anaconda】重装2.激活环境condaactivatename三
- [动手学深度学习-PyTorch版]-8.4计算性能-多GPU计算
蒸饺与白茶
8.4多GPU计算注:相对于本章的前面几节,我们实际中更可能遇到本节所讨论的情况:多GPU计算。原书将MXNet的多GPU计算分成了8.4和8.5两节,但我们将关于PyTorch的多GPU计算统一放在本节讨论。需要注意的是,这里我们谈论的是单主机多GPU计算而不是分布式计算。如果对分布式计算感兴趣可以参考PyTorch官方文档。本节中我们将展示如何使用多块GPU计算,例如,使用多块GPU训练同一个
- 模型优化论文笔记6----MobileNets采用深度可分离卷积在权衡精度的同时减小模型尺寸和时延
JaJaJaJaaaa
模型优化卷积神经网络深度学习
《MobileNets:EfficientConvolutionalNeuralNetworksforMobileVisionApplications》论文地址:https://arxiv.org/abs/1704.04861MXNet框架代码:https://github.com/miraclewkf/mobilenet-MXNet1.主要思想介绍了两种简单的全局超参数用以平衡时延和准确率,构建
- 打破硬件壁垒:TVM 助力 AI技术跨平台部署
程序边界
人工智能
文章目录《TVM编译器原理与实践》编辑推荐内容简介作者简介目录前言/序言获取方式随着人工智能(ArtificialIntelligence,AI)在全世界信息产业中的广泛应用,深度学习模型已经成为推动AI技术革命的关键。TensorFlow、PyTorch、MXNet、Caffe等深度学习模型已经在服务器级GPU上取得了显著的成果。然而,大多数现有的系统框架只针对小范围的服务器级GPU进行过优化,
- ART-Adversarial Robustness Toolbox检测AI模型及对抗攻击的工具
Rnan-prince
网络安全人工智能python
一、工具简介AdversarialRobustnessToolbox是IBM研究团队开源的用于检测模型及对抗攻击的工具箱,为开发人员加强AI模型被误导的防御性,让AI系统变得更加安全,ART支持所有流行的机器学习框架(TensorFlow,Keras,PyTorch,MXNet,scikit-learn,XGBoost,LightGBM,CatBoost,GPy等),所有数据类型(图像,表格,音频
- JAVA 程序员的宝藏 AI 工具箱 – Deep Java Library (DJL)
Lannnking
转载自知乎前言这几年深度学习的爆发带来了一个未曾预料到的结果,Python这个曾经小众的语言突然之间变得炙手可热。究其原因,在Python的生态中我们可以容易的找到许多的资源。例如,NumPy用于数据计算、Matplotlib用于数据可视化以及MXNet、PyTorch、TensorFlow等一众深度学习框架。相比之下,尽管Java语言仍是最流行的语言之一,拥有为数众多的开发者,尤其在企业市场拥有
- MxNet源码解析(2) symbol
Junr_0926
1.前言我们在训练之前,先建立好一个图,然后我们可以在这个图上做我们想做的优化,这种形式称为SymbolicPrograms。相对应的是ImperativePrograms,也就是每一句代码都对应着程序的执行,在这种情况下,我们可以写类似于下面的代码:a=2b=a+1d=np.zeros(10)foriinrange(d):d+=np.zeros(10)这在symbolic的方式下是做不到的,因为
- DMLC深度机器学习框架MXNet的编译安装
AI小白龙*
机器学习mxnet人工智能计算机视觉YOLO深度学习tensorflow
这篇文章将介绍MXNet的编译安装。MXNet的编译安装分为两步:首先,从C++源码编译共享库(libmxnet.soforlinux,libmxnet.dylibforosx,libmxnet.dllforwindows)。接着,安装语言包。1.构建共享库依赖目标是构建共享库文件。最小构建需求:最新的支持C++11的C++编译器,比如g++>=4.8,clang一份BLAS库,比如libblas
- AI 训练框架:Pytorch TensorFLow MXNet Caffe ONNX PaddlePaddle
linzhiji
人工智能pytorchtensorflow
https://medium.com/jit-team/bridge-tools-for-machine-learning-frameworks-3eb68d6c6558
- 深度学习之TensorFlow——基本使用
人工智能小豪
neo4jtensorflow人工智能深度学习
一、目前主流的深度学习框架Caffe,TensorFlow,MXNet,Torch,Theano比较库名称开发语言速度灵活性文档适合模型平台上手难易Caffec++/cuda快一般全面CNN所有系统中等TensorFlowc++/cuda/Python中等好中等CNN/RNNLinux,OSX难MXNetc++/cuda快好全面CNN所有系统中等Torchc/lua/cuda快好全面CNN/RNN
- 【AI】模型结构可视化工具Netron应用
TopFancy
人工智能人工智能模型可视化Netron
随着AI模型的发展,模型的结构也变得越来越复杂,理解起来越来越困难,这时候能够画一张结构图就好了,就像我们在开发过程中用到的UML类图,能够直观看出不同层之间的关系,于是Netron就来了。Netron支持神经网络、深度学习和机器学习网络的可视化。支持ONNX,TensorFlowLite,CoreML,Keras,Caffe,Darknet,MXNet,PaddlePaddle,ncnn,MNN
- 深度学习框架 の 动态图 vs 静态图
CW不要无聊的风格
Date:2020/08/03Author:CWForeword:各位炼丹者应该都会有自己常用的一种或几种深度学习框架,如MxNet、Caffe、Tensorflow、Pytorch、PaddlePaddle(百度),甚至是国产新兴框架MegEngine(旷视)、MindSpore(华为)等,在涉及介绍这些框架的时候,都会提及动态图和静态图这样的概念,那么它们究竟是什么意思呢?在框架中又是如何体现
- 深度学习_Softmax简洁实现(Gluon实现)
VictorHong
Softmax多分类简洁实现(Gluon实现)导入必要的包importd2lzhasd2lfrommxnetimportndfrommxnet.gluonimportdataasgdata,lossasgloss,nnfrommxnetimportgluon,init获取和读取数据batch_size=256train_iter,test_iter=d2l.load_data_fashion_mn
- nvidia-docker gpu环境搭建
chaos_chen
dockergpu环境搭建前言搭建GPU的开发环境需要安装nvidia的驱动、cuda、cudnn等,还要安装tensorflow、pytorch、mxnet等框架,并且驱动版本和框架版本需要相统一,如tensorflow1.9的版本需要对用cuda9.0,如果要升级tensorflow,cuda也要做相应的升级。每次在新机器上部署环境都费时费力,因此急需一套docker来快速移植。安装nvidi
- Win10系统下 Tensorrt C++部署yolov5
o氧气o
YOLO人工智能深度学习
1.TensorRt介绍TensorRt是一个有助于在NVIDIA图形处理单元(GPU)上高性能推理c++库。它旨在与TesnsorFlow、Caffe、Pytorch以及MXNet等训练框架以互补的方式进行工作,专门致力于在GPU上快速有效地进行网络推理。一般的深度学习项目,训练时为了加快速度,会使用多GPU并行训练。但在部署推理时,为了降低成本,往往使用单个GPU机器甚至嵌入式平台(比如NVI
- 深度学习工具那么多,究竟哪款最适合你?| 线下沙龙 × 报名
PaperWeekly
又到了炼丹师线下面基时间在之前几期线下沙龙中我们涉及了各类NLP、CV细分领域在现场研讨了大量顶会论文寒冬12月的第一个周末我们想要玩点新花样为大家推荐一些当前最先进的深度学习软件工具毕竟世界上最遥远的距离就是我们用同一个模型却有着不同的软硬件搭配无论你是TFBoy还是MXNeter都不妨这周日来现场和各家核心工程师、开发者专家互撩届时还有各种正版周边小礼物坐等你们抱回家哟~郑达/亚马逊AWS应用
- 线下沙龙 × 报名 | 深度学习工具那么多,究竟哪款最适合你?
PaperWeekly
又到了炼丹师线下面基时间在之前几期线下沙龙中我们涉及了各类NLP、CV细分领域在现场研讨了大量顶会论文寒冬12月的第一个周末我们想要玩点新花样为大家推荐一些当前最先进的深度学习软件工具毕竟世界上最遥远的距离就是我们用同一个模型却有着不同的软硬件搭配无论你是TFBoy还是MXNeter都不妨这周日来现场和各家核心工程师、开发者专家互撩届时还有各种正版周边小礼物坐等你们抱回家哟~郑达/亚马逊AWS应用
- [PyTorch][chapter 7][李宏毅深度学习][深度学习简介]
明朝百晓生
人工智能
前言:深度学习常用的开发平台TensorFlowtorchtheanocaffeDSSTNEmxnetlibdnnCNTK目录:1:深度学习发展历史2:DeepLearning工程简介3:DNN简介一发展历史二DeepLearning工程简介深度学习三大步:定义映射函数(神经网络)定义损失函数通过梯度更新,选择最好的映射函数2.1NeuralNetwork给定了一个函数,可以设置不同的参数,所以对
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分