人工智能之个性推荐案例--算法实现:User-Based CF 预测评分

案例--算法实现:User-Based CF 预测评分

评分预测公式:

算法实现

  • 实现评分预测方法:predict

    # ......
    
    def predict(uid, iid, ratings_matrix, user_similar):
        '''
        预测给定用户对给定物品的评分值
        :param uid: 用户ID
        :param iid: 物品ID
        :param ratings_matrix: 用户-物品评分矩阵
        :param user_similar: 用户两两相似度矩阵
        :return: 预测的评分值
        '''
        print("开始预测用户<%d>对电影<%d>的评分..."%(uid, iid))
        # 1. 找出uid用户的相似用户
        similar_users = user_similar[uid].drop([uid]).dropna()
        # 相似用户筛选规则:正相关的用户
        similar_users = similar_users.where(similar_users>0).dropna()
        if similar_users.empty is True:
            raise Exception("用户<%d>没有相似的用户" % uid)
    
        # 2. 从uid用户的近邻相似用户中筛选出对iid物品有评分记录的近邻用户
        ids = set(ratings_matrix[iid].dropna().index)&set(similar_users.index)
        finally_similar_users = similar_users.ix[list(ids)]
    
        # 3. 结合uid用户与其近邻用户的相似度预测uid用户对iid物品的评分
        sum_up = 0    # 评分预测公式的分子部分的值
        sum_down = 0    # 评分预测公式的分母部分的值
        for sim_uid, similarity in finally_similar_users.iteritems():
            # 近邻用户的评分数据
            sim_user_rated_movies = ratings_matrix.ix[sim_uid].dropna()
            # 近邻用户对iid物品的评分
            sim_user_rating_for_item = sim_user_rated_movies[iid]
            # 计算分子的值
            sum_up += similarity * sim_user_rating_for_item
            # 计算分母的值
            sum_down += similarity
    
        # 计算预测的评分值并返回
        predict_rating = sum_up/sum_down
        print("预测出用户<%d>对电影<%d>的评分:%0.2f" % (uid, iid, predict_rating))
        return round(predict_rating, 2)
    
    if __name__ == '__main__':
        ratings_matrix = load_data(DATA_PATH)
    
        user_similar = compute_pearson_similarity(ratings_matrix, based="user")
        # 预测用户1对物品1的评分
        predict(1, 1, ratings_matrix, user_similar)
        # 预测用户1对物品2的评分
        predict(1, 2, ratings_matrix, user_similar)
    
  • 实现预测全部评分方法:predict_all

    # ......
    def predict_all(uid, ratings_matrix, user_similar):
        '''
        预测全部评分
        :param uid: 用户id
        :param ratings_matrix: 用户-物品打分矩阵
        :param user_similar: 用户两两间的相似度
        :return: 生成器,逐个返回预测评分
        '''
        # 准备要预测的物品的id列表
        item_ids = ratings_matrix.columns
        # 逐个预测
        for iid in item_ids:
            try:
                rating = predict(uid, iid, ratings_matrix, user_similar)
            except Exception as e:
                print(e)
            else:
                yield uid, iid, rating
    
    if __name__ == '__main__':
        ratings_matrix = load_data(DATA_PATH)
    
        user_similar = compute_pearson_similarity(ratings_matrix, based="user")
    
        for i in predict_all(1, ratings_matrix, user_similar):
            pass
    
  • 添加过滤规则

    def _predict_all(uid, item_ids, ratings_matrix, user_similar):
        '''
        预测全部评分
        :param uid: 用户id
        :param item_ids: 要预测的物品id列表
        :param ratings_matrix: 用户-物品打分矩阵
        :param user_similar: 用户两两间的相似度
        :return: 生成器,逐个返回预测评分
        '''
        # 逐个预测
        for iid in item_ids:
            try:
                rating = predict(uid, iid, ratings_matrix, user_similar)
            except Exception as e:
                print(e)
            else:
                yield uid, iid, rating
    
    def predict_all(uid, ratings_matrix, user_similar, filter_rule=None):
        '''
        预测全部评分,并可根据条件进行前置过滤
        :param uid: 用户ID
        :param ratings_matrix: 用户-物品打分矩阵
        :param user_similar: 用户两两间的相似度
        :param filter_rule: 过滤规则,只能是四选一,否则将抛异常:"unhot","rated",["unhot","rated"],None
        :return: 生成器,逐个返回预测评分
        '''
    
        if not filter_rule:
            item_ids = ratings_matrix.columns
        elif isinstance(filter_rule, str) and filter_rule == "unhot":
            '''过滤非热门电影'''
            # 统计每部电影的评分数
            count = ratings_matrix.count()
            # 过滤出评分数高于10的电影,作为热门电影
            item_ids = count.where(count>10).dropna().index
        elif isinstance(filter_rule, str) and filter_rule == "rated":
            '''过滤用户评分过的电影'''
            # 获取用户对所有电影的评分记录
            user_ratings = ratings_matrix.ix[uid]
            # 评分范围是1-5,小于6的都是评分过的,除此以外的都是没有评分的
            _ = user_ratings<6
            item_ids = _.where(_==False).dropna().index
        elif isinstance(filter_rule, list) and set(filter_rule) == set(["unhot", "rated"]):
            '''过滤非热门和用户已经评分过的电影'''
            count = ratings_matrix.count()
            ids1 = count.where(count > 10).dropna().index
    
            user_ratings = ratings_matrix.ix[uid]
            _ = user_ratings < 6
            ids2 = _.where(_ == False).dropna().index
            # 取二者交集
            item_ids = set(ids1)&set(ids2)
        else:
            raise Exception("无效的过滤参数")
    
        yield from _predict_all(uid, item_ids, ratings_matrix, user_similar)
    
    if __name__ == '__main__':
        ratings_matrix = load_data(DATA_PATH)
    
        user_similar = compute_pearson_similarity(ratings_matrix, based="user")
    
        for result in predict_all(1, ratings_matrix, user_similar, filter_rule=["unhot", "rated"]):
            print(result)
    
  • 根据预测评分为指定用户进行TOP-N推荐:

  • # ......
    
    def top_k_rs_result(k):
        ratings_matrix = load_data(DATA_PATH)
        user_similar = compute_pearson_similarity(ratings_matrix, based="user")
        results = predict_all(1, ratings_matrix, user_similar, filter_rule=["unhot", "rated"])
        return sorted(results, key=lambda x: x[2], reverse=True)[:k]
    
    if __name__ == '__main__':
        from pprint import pprint
        result = top_k_rs_result(20)
        pprint(result)
    
    

二 推荐系统设计

2.1 推荐系统要素

  • UI 和 UE(前端界面)

  • 数据 (Lambda架构)

  • 业务知识

  • 算法

2.2 推荐系统架构

  • 推荐系统整体架构

  • 大数据Lambda架构

    • 由Twitter工程师Nathan Marz(storm项目发起人)提出

    • Lambda系统架构提供了一个结合实时数据和Hadoop预先计算的数据环境和混合平台, 提供一个实时的数据视图

    • 分层架构

      • 批处理层
        • 数据不可变, 可进行任何计算, 可水平扩展

        • 高延迟 几分钟~几小时(计算量和数据量不同)

        • 日志收集 Flume

        • 分布式存储 Hadoop hdfs

        • 分布式计算 Hadoop MapReduce & spark

        • 视图存储数据库
          • nosql(HBase/Cassandra)

          • Redis/memcache

          • MySQL

      • 实时处理层
        • 流式处理, 持续计算

        • 存储和分析某个窗口期内的数据

        • 最终正确性(Eventual accuracy)

        • 实时数据收集 flume & kafka

        • 实时数据分析 spark streaming/storm/flink

      • 服务层
        • 支持随机读

        • 需要在非常短的时间内返回结果

        • 读取批处理层和实时处理层结果并对其归并

    • Lambda架构图

  • 推荐算法架构

    • 召回阶段(海选)
      • 召回决定了最终推荐结果的天花板

      • 常用算法:
        • 协同过滤(基于用户 基于物品的)

        • 基于内容 (根据用户行为总结出自己的偏好 根据偏好 通过文本挖掘技术找到内容上相似的商品)

        • 基于隐语义

    • 排序阶段
      • 召回决定了最终推荐结果的天花板, 排序逼近这个极限, 决定了最终的推荐效果

      • CTR预估 (点击率预估 使用LR算法) 估计用户是否会点击某个商品 需要用户的点击数据

    • 策略调整

  • 推荐系统的整体架构

 

你可能感兴趣的:(人工智能,python,人工智能,推荐算法)