nn.Linear & Tensor.masked_fill

文章目录

  • 1. nn.Linear
  • 2. Tensor.masked_fill

1. nn.Linear

  • torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)

    • Applies a linear transformation to the incoming data: y = x A T + b y = xA^T + b y=xAT+b
    • This module supports TensorFloat32.
    • On certain ROCm devices, when using float16 inputs this module will use different precision for backward.
  • Parameters

    • in_features – size of each input sample
    • out_features – size of each output sample
    • bias – If set to False, the layer will not learn an additive bias. Default: True
  • Shape:

    • Input: ( ∗ , H i n ) (*, H_{in}) (,Hin), where * means any number of dimensions including none and H i n = in_features H_{in} = \text{in\_features} Hin=in_features
    • Output: ( ∗ , H o u t ) (*, H_{out}) (,Hout), where all but the last dimension are the same shape as the input and H o u t = out_features H_{out} = \text{out\_features} Hout=out_features

2. Tensor.masked_fill

Tensor.masked_fill_(mask, value)

Fills elements of self tensor with value where mask is True. The shape of mask must be broadcastable with the shape of the underlying tensor.

  • Parameters
    • mask (BoolTensor) – the boolean mask
    • value (float) – the value to fill in with

你可能感兴趣的:(PyTorch,深度学习,python,机器学习)