YOLO5使用手册YOLOv5 文档 (ultralytics.com)
已经卡死了,买TX2_NX的小伙伴只能代码上努努力了
还得
sudo fallocate -l 64G /swapfile
196 sudo chmod 600 /swapfile
197 sudo mkswap /swapfile
198 sudo swapon /swapfile
199 free -h
200 df -h
201 sudo bash -c 'echo"/swapfile swap swap defaults 0 0" >> /etc/fstab'
202 sudo bash -c 'echo "/swapfile swap swap defaults 0 0" >> /etc/fstab'
203 cat /etc/fstab
204 history
增加交换空间
YOLO是“你只看一次”的首字母缩写,是一种将图像划分为网格系统的对象检测算法。网格中的每个单元负责检测其内部的对象。
YOLO 因其速度和准确性而成为最著名的对象检测算法之一
nvidia@nvidia-desktop:~/yolov5-6.1$ python3 detect.py --weights yolov5s.pt --source data/images/bus.jpg
detect: weights=['yolov5s.pt'], source=data/images/bus.jpg, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, e_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, e_labels=False, hide_conf=False, half=False, dnn=False
YOLOv5 2022-2-22 torch 1.12.0a0+2c916ef.nv22.3 CUDA:0 (Orin, 30537MiB)
Fusing layers...
Model Summary: 224 layers, 7266973 parameters, 0 gradients
Traceback (most recent call last):
File "detect.py", line 257, in
main(opt)
File "detect.py", line 252, in main
run(**vars(opt))
File "/home/nvidia/.local/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "detect.py", line 113, in run
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz), half=half) # warmup
File "/home/nvidia/yolov5-6.1/models/common.py", line 463, in warmup
self.forward(im) # warmup
File "/home/nvidia/yolov5-6.1/models/common.py", line 402, in forward
y = self.model(im) if self.jit else self.model(im, augment=augment, visualize=visualize)
File "/home/nvidia/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1111, in _call_impl
return forward_call(*input, **kwargs)
File "/home/nvidia/yolov5-6.1/models/yolo.py", line 126, in forward
return self._forward_once(x, profile, visualize) # single-scale inference, train
File "/home/nvidia/yolov5-6.1/models/yolo.py", line 149, in _forward_once
x = m(x) # run
File "/home/nvidia/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1111, in _call_impl
return forward_call(*input, **kwargs)
File "/home/nvidia/.local/lib/python3.8/site-packages/torch/nn/modules/upsampling.py", line 154, in forward
recompute_scale_factor=self.recompute_scale_factor)
File "/home/nvidia/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1186, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'Upsample' object has no attribute 'recompute_scale_factor'
nvidia@nvidia-desktop:~/yolov5-6.1$ sudo vi /home/nvidia/.local/lib/python3.8/site-packages/torch/nn/modules/upsampling.py
[sudo] password for nvidia:
nvidia@nvidia-desktop:~/yolov5-6.1$ sudo vi /home/nvidia/.local/lib/python3.8/site-packages/torch/nn/modules/upsampling.py
nvidia@nvidia-desktop:~/yolov5-6.1$ python3 detect.py --weights yolov5s.pt --source data/images/bus. jpg
detect: weights=['yolov5s.pt'], source=data/images/bus.jpg, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, e_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, e_labels=False, hide_conf=False, half=False, dnn=False
YOLOv5 2022-2-22 torch 1.12.0a0+2c916ef.nv22.3 CUDA:0 (Orin, 30537MiB)
Fusing layers...
Model Summary: 224 layers, 7266973 parameters, 0 gradients
Traceback (most recent call last):
File "detect.py", line 257, in
main(opt)
File "detect.py", line 252, in main
run(**vars(opt))
File "/home/nvidia/.local/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "detect.py", line 113, in run
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz), half=half) # warmup
File "/home/nvidia/yolov5-6.1/models/common.py", line 463, in warmup
self.forward(im) # warmup
File "/home/nvidia/yolov5-6.1/models/common.py", line 402, in forward
y = self.model(im) if self.jit else self.model(im, augment=augment, visualize=visualize)
File "/home/nvidia/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1111, in _call_impl
return forward_call(*input, **kwargs)
File "/home/nvidia/yolov5-6.1/models/yolo.py", line 126, in forward
return self._forward_once(x, profile, visualize) # single-scale inference, train
File "/home/nvidia/yolov5-6.1/models/yolo.py", line 149, in _forward_once
x = m(x) # run
File "/home/nvidia/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1111, in _call_impl
return forward_call(*input, **kwargs)
File "/home/nvidia/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 202, in _forward_unimplemented
raise NotImplementedError
NotImplementedError
nvidia@nvidia-desktop:~/yolov5-6.1$ sudo vi /home/nvidia/.local/lib/python3.8/site-packages/torch/nn/modules/upsampling.py
nvidia@nvidia-desktop:~/yolov5-6.1$ python3 detect.py --weights yolov5s.pt --source data/images/bus.jpg
detect: weights=['yolov5s.pt'], source=data/images/bus.jpg, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, e_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, e_labels=False, hide_conf=False, half=False, dnn=False
YOLOv5 2022-2-22 torch 1.12.0a0+2c916ef.nv22.3 CUDA:0 (Orin, 30537MiB)
Fusing layers...
Model Summary: 224 layers, 7266973 parameters, 0 gradients
image 1/1 /home/nvidia/yolov5-6.1/data/images/bus.jpg: 640x480 4 persons, 1 bus, 1 fire hydrant, Done. (0.031s)
Speed: 2.3ms pre-process, 30.6ms inference, 4.4ms NMS per image at shape (1, 3, 640, 640)
Results saved to runs/detect/exp3
nvidia@nvidia-desktop:~/yolov5-6.1$ ls
CONTRIBUTING.md detect.py export.py LICENSE __pycache__ requirements.txt setup.cfg tutorial.ipynb val.py
data Dockerfile hubconf.py models README.md runs train.py utils yolov5s.pt
nvidia@nvidia-desktop:~/yolov5-6.1$ sudo vi /home/nvidia/.local/lib/python3.8/site-packages/torch/nn/modules/upsampling.py
nvidia@nvidia-desktop:~/yolov5-6.1$ ls
CONTRIBUTING.md detect.py export.py LICENSE __pycache__ requirements.txt setup.cfg tutorial.ipynb val.py
data Dockerfile hubconf.py models README.md runs train.py utils yolov5s.pt
nvidia@nvidia-desktop:~/yolov5-6.1$ cd runs/detect/exp
exp/ exp2/ exp3/
nvidia@nvidia-desktop:~/yolov5-6.1$ cd runs/detect/exp
exp/ exp2/ exp3/
nvidia@nvidia-desktop:~/yolov5-6.1$ cd runs/detect/exp3/
nvidia@nvidia-desktop:~/yolov5-6.1/runs/detect/exp3$ ls
bus.jpg
视频效果如下