在用自己数据集跑YOLOv5代码时候,需要将自己的VOC标签格式数据集转为yolo格式。
首先是要获取自己的数据集,然后再对数据集进行标注,保存为VOC(xml格式)。然后再把标注完的数据集划分为训练集和验证集,这样更加方便模型的训练和测试。首先上划分数据集的代码。这里提供了一份代码将xml格式的标注文件转换为txt格式的标注文件,并按比例划分为训练集、验证集和测试集。代码如下:
classes为自己数据集的类别名称,TRAIN_RATIO为训练集比例,本代码按照6:2:2比例划分为训练集、验证集和测试集,可自行调整。
import xml.etree.ElementTree as ET import pickle import os from os import listdir, getcwd from os.path import join import random from shutil import copyfile classes = ["hens"] # classes = ["hat", "person"] #classes = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', #'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] TRAIN_RATIO = 60 def clear_hidden_files(path): dir_list = os.listdir(path) for i in dir_list: abspath = os.path.join(os.path.abspath(path), i) if os.path.isfile(abspath): if i.startswith("._"): os.remove(abspath) else: clear_hidden_files(abspath) def convert(size, box): dw = 1. / size[0] dh = 1. / size[1] x = (box[0] + box[1]) / 2.0 y = (box[2] + box[3]) / 2.0 w = box[1] - box[0] h = box[3] - box[2] x = x * dw w = w * dw y = y * dh h = h * dh return (x, y, w, h) def convert_annotation(image_id): in_file = open('VOCdevkit/VOC2007/Annotations/%s.xml' % image_id, encoding="utf_8") out_file = open('VOCdevkit/VOC2007/YOLOLabels/%s.txt' % image_id, 'w', encoding="utf_8") tree = ET.parse(in_file) root = tree.getroot() size = root.find('size') w = int(size.find('width').text) h = int(size.find('height').text) for obj in root.iter('object'): if obj.find('difficult'): difficult = obj.find('difficult').text else: difficult = 0 cls = obj.find('name').text if cls not in classes or int(difficult) == 1: continue cls_id = classes.index(cls) xmlbox = obj.find('bndbox') b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)) bb = convert((w, h), b) out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') in_file.close() out_file.close() wd = os.getcwd() wd = os.getcwd() data_base_dir = os.path.join(wd, "VOCdevkit/") if not os.path.isdir(data_base_dir): os.mkdir(data_base_dir) work_sapce_dir = os.path.join(data_base_dir, "VOC2007/") if not os.path.isdir(work_sapce_dir): os.mkdir(work_sapce_dir) annotation_dir = os.path.join(work_sapce_dir, "Annotations/") if not os.path.isdir(annotation_dir): os.mkdir(annotation_dir) clear_hidden_files(annotation_dir) image_dir = os.path.join(work_sapce_dir, "JPEGImages/") if not os.path.isdir(image_dir): os.mkdir(image_dir) clear_hidden_files(image_dir) yolo_labels_dir = os.path.join(work_sapce_dir, "YOLOLabels/") if not os.path.isdir(yolo_labels_dir): os.mkdir(yolo_labels_dir) clear_hidden_files(yolo_labels_dir) yolov5_images_dir = os.path.join(data_base_dir, "images/") if not os.path.isdir(yolov5_images_dir): os.mkdir(yolov5_images_dir) clear_hidden_files(yolov5_images_dir) yolov5_labels_dir = os.path.join(data_base_dir, "labels/") if not os.path.isdir(yolov5_labels_dir): os.mkdir(yolov5_labels_dir) clear_hidden_files(yolov5_labels_dir) yolov5_images_train_dir = os.path.join(yolov5_images_dir, "train/") if not os.path.isdir(yolov5_images_train_dir): os.mkdir(yolov5_images_train_dir) clear_hidden_files(yolov5_images_train_dir) yolov5_images_val_dir = os.path.join(yolov5_images_dir, "val/") if not os.path.isdir(yolov5_images_val_dir): os.mkdir(yolov5_images_val_dir) clear_hidden_files(yolov5_images_val_dir) yolov5_images_test_dir = os.path.join(yolov5_images_dir, "test/") if not os.path.isdir(yolov5_images_test_dir): os.mkdir(yolov5_images_test_dir) clear_hidden_files(yolov5_images_test_dir) yolov5_labels_train_dir = os.path.join(yolov5_labels_dir, "train/") if not os.path.isdir(yolov5_labels_train_dir): os.mkdir(yolov5_labels_train_dir) clear_hidden_files(yolov5_labels_train_dir) yolov5_labels_val_dir = os.path.join(yolov5_labels_dir, "val/") if not os.path.isdir(yolov5_labels_val_dir): os.mkdir(yolov5_labels_val_dir) clear_hidden_files(yolov5_labels_val_dir) yolov5_labels_test_dir = os.path.join(yolov5_labels_dir, "test/") if not os.path.isdir(yolov5_labels_test_dir): os.mkdir(yolov5_labels_test_dir) clear_hidden_files(yolov5_labels_test_dir) train_file = open(os.path.join(wd, "yolov5_train.txt"), 'w') val_file = open(os.path.join(wd, "yolov5_val.txt"), 'w') test_file = open(os.path.join(wd, "yolov5_test.txt"), 'w') train_file.close() val_file.close() test_file.close() train_file = open(os.path.join(wd, "yolov5_train.txt"), 'a') val_file = open(os.path.join(wd, "yolov5_val.txt"), 'a') test_file = open(os.path.join(wd, "yolov5_test.txt"), 'a') list_imgs = os.listdir(image_dir) # list image files prob = random.randint(1, 100) print("Probability: %d" % prob) for i in range(0, len(list_imgs)): path = os.path.join(image_dir, list_imgs[i]) if os.path.isfile(path): image_path = image_dir + list_imgs[i] voc_path = list_imgs[i] (nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path)) (voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path)) annotation_name = nameWithoutExtention + '.xml' annotation_path = os.path.join(annotation_dir, annotation_name) label_name = nameWithoutExtention + '.txt' label_path = os.path.join(yolo_labels_dir, label_name) prob = random.randint(1, 100) print("Probability: %d" % prob) if (prob < TRAIN_RATIO): # train dataset if os.path.exists(annotation_path): train_file.write(image_path + '\n') convert_annotation(nameWithoutExtention) # convert label copyfile(image_path, yolov5_images_train_dir + voc_path) copyfile(label_path, yolov5_labels_train_dir + label_name) elif (prob > TRAIN_RATIO and prob < 80): if os.path.exists(annotation_path): val_file.write(image_path + '\n') convert_annotation(nameWithoutExtention) # convert label copyfile(image_path, yolov5_images_val_dir + voc_path) copyfile(label_path, yolov5_labels_val_dir + label_name) else : # test dataset if os.path.exists(annotation_path): test_file.write(image_path + '\n') convert_annotation(nameWithoutExtention) # convert label copyfile(image_path, yolov5_images_test_dir + voc_path) copyfile(label_path, yolov5_labels_test_dir + label_name) train_file.close() test_file.close() 运行上述代码后,在VOCdevkit目录下生成images和labels文件夹,文件夹下分别生成了train文件夹、val文件夹和test文件夹,里面分别保存着训练集的照片和txt格式的标签、验证集的照片和txt格式的标签以及测试集的照片和txt格式的标签images文件夹和labels文件夹。在VOCdevkit/VOC2007目录下还生成了一个YOLOLabels文件夹,里面存放着所有的txt格式的标签文件。
yaml文件按如下路径修改即可,注意将nc调整为自己数据集类别个数,names调整为自己数据集类别名称。