LSTM基本应用_mnist

数据加载

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('E:/tensorflow/1005/data/MNIST_data/',one_hot=True)
#我先将数据下载到文件家中解压缩

参数定义域网络搭建

#参数
n_input = 28
n_step = 28
n_hidden = 128
n_classes = 10
#定义占位符
x = tf.placeholder(tf.float32,[None,n_step,n_input])
#这里的x为[batch_size * 28 * 28]

y = tf.placeholder(tf.float32,[None,n_classes])
#y为[batch_size,10]

x1 = tf.unstack(x,n_step,axis=1)    #返回一个长度为T的List,list的长度为28,第一项为--》【:,0,:】,size = 【batch_size,列数】,就是将一批中的所有行作为一个输入

注意:static_rnn输入时一个List,代表序列的List,长度为T。
可以理解将图片按行输入

lstm = tf.contrib.rnn.BasicLSTMCell(128,forget_bias=1.0)
#cell中128表示有128个cell状态、输出状态
outputs, states = tf.contrib.rnn.static_rnn(lstm,x1,dtype=tf.float32)

outputs 是一个list,这里是一个长度为28的list,每输入一行数据输出一项
list的每一项为【batch_size,128】
states为【2,batch_size,128】,2分别指output和cell

pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn=None)

这里只取了最后一层的输出(前面层的信息通过LSTM传递到最后一层),所以输入size是【batch_size,128】,pred结果是【batch_size,2】

数据处理

import numpy as np
trainX = np.array(mnist.train.images.reshape([-1,28,28]))
trainY = np.array(mnist.train.labels)
testX = np.array(mnist.test.images.reshape([-1,28,28]))
testY = np.array(mnist.test.labels)

运行。。。。

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))
#交叉熵
optimizer = tf.train.AdamOptimizer(0.01).minimize(loss)
initializer = tf.global_variables_initializer()
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(pred,axis=1),tf.argmax(y,axis=1)),tf.float32))

with tf.Session() as sess:
    sess.run(initializer)
    

    for i in range(1000):
        timg = trainX[55*i:55*(i+1)]
        tlab = trainY[55*i:55*(i+1)]
        #print(timg.shape)
        #print(tlab.shape)
        sess.run(optimizer,feed_dict={x:timg,y:tlab})
        l,a = sess.run([loss,accuracy],feed_dict={x:timg,y:tlab})
        print('cishu {0} : loss = {1}, accuracy = {2}'.format(i+1,l,a))    
        
        
    l,a = sess.run([loss,accuracy],feed_dict={x:testX,y:testY})
    print('Test: loss = {0}, accuracy = {1}'.format(l,a))

参考文献:深度学习之Tensorflow,李金洪

你可能感兴趣的:(深度学习,tensorflow)