用javascript分类刷leetcode9.位运算(图文视频讲解)

位运算基础:

程序中所有的数载计算机内存中都是以二进制存储的,位运算就是直接对整数在内存中的二进制进行操作,由于直接在内存中进行操作,不需要转成十进制,因此处理速度非常快

用javascript分类刷leetcode9.位运算(图文视频讲解)_第1张图片

常见位运算

x & 1 === 0 //判断奇偶
x & (x - 1) //清除最右边的1
x & -x //得到最右边的1

用javascript分类刷leetcode9.位运算(图文视频讲解)_第2张图片

191. 位1的个数 (easy)

编写一个函数,输入是一个无符号整数(以二进制串的形式),返回其二进制表达式中数字位数为 '1' 的个数(也被称为汉明重量)。

提示:

请注意,在某些语言(如 Java)中,没有无符号整数类型。在这种情况下,输入和输出都将被指定为有符号整数类型,并且不应影响您的实现,因为无论整数是有符号的还是无符号的,其内部的二进制表示形式都是相同的。
在 Java 中,编译器使用二进制补码记法来表示有符号整数。因此,在上面的 示例 3 中,输入表示有符号整数 -3。

示例 1:

输入:00000000000000000000000000001011
输出:3
解释:输入的二进制串 00000000000000000000000000001011 中,共有三位为 '1'。
示例 2:

输入:00000000000000000000000010000000
输出:1
解释:输入的二进制串 00000000000000000000000010000000 中,共有一位为 '1'。
示例 3:

输入:11111111111111111111111111111101
输出:31
解释:输入的二进制串 11111111111111111111111111111101 中,共有 31 位为 '1'。

提示:

输入必须是长度为 32 的 二进制串 。

进阶:

如果多次调用这个函数,你将如何优化你的算法?

用javascript分类刷leetcode9.位运算(图文视频讲解)_第3张图片

方法1:循环每个二进制位
  • 思路:直接循环二进制中的每一位,判断是否为1,统计1的个数
  • 复杂度分析:时间复杂度O(k),k=32。空间复杂度为O(1)

Js:

var hammingWeight = function(n) {
    let ret = 0;
    for (let i = 0; i < 32; i++) {
        if ((n & (1 << i)) !== 0) {//让1不断左移 判断该位是否为1
            ret++;
        }
    }
    return ret;
};
方法2:优化循环的过程
  • 思路:巧用二进制公式x&(x-1)表示去掉二进制中最右边的第一个1,加速循环过程
  • 复杂度分析:时间复杂度为O(k),k为二进制中1的个数,最坏的情况下所有位都是1。空间复杂度是O(1)

js:

var hammingWeight = function(n) {
    let ret = 0;
    while (n) {
        n &= n - 1;//不断消掉最右边的1
        ret++;
    }
    return ret;
};

268. 丢失的数字 (easy)

给定一个包含 [0, n] 中 n 个数的数组 nums ,找出 [0, n] 这个范围内没有出现在数组中的那个数。

示例 1:

输入:nums = [3,0,1]
输出:2
解释:n = 3,因为有 3 个数字,所以所有的数字都在范围 [0,3] 内。2 是丢失的数字,因为它没有出现在 nums 中。
示例 2:

输入:nums = [0,1]
输出:2
解释:n = 2,因为有 2 个数字,所以所有的数字都在范围 [0,2] 内。2 是丢失的数字,因为它没有出现在 nums 中。
示例 3:

输入:nums = [9,6,4,2,3,5,7,0,1]
输出:8
解释:n = 9,因为有 9 个数字,所以所有的数字都在范围 [0,9] 内。8 是丢失的数字,因为它没有出现在 nums 中。
示例 4:

输入:nums = [0]
输出:1
解释:n = 1,因为有 1 个数字,所以所有的数字都在范围 [0,1] 内。1 是丢失的数字,因为它没有出现在 nums 中。

提示:

n == nums.length
1 <= n <= 104
0 <= nums[i] <= n
nums 中的所有数字都 独一无二

进阶:你能否实现线性时间复杂度、仅使用额外常数空间的算法解决此问题?

方法1.排序:在循环数组,看后一个数是不是比前一个大1

方法2.哈希表:将数组中的元素插入哈希表,然后循环0~nums.length-1中的数是不是都在哈希表中

方法3.求和:0~nums.length-1求和减去nums中的和

方法4:位运算

  • 思路:相同的数异或为0
  • 复杂度:时间复杂度O(n),空间复杂度O(1)

js:

//nums = [3,0,1]
//index = 0,1,2
var missingNumber = function (nums) {
    let missing = nums.length
    for (let i = 0; i < nums.length; i++) {//相同的数异或为0
        missing = missing ^ nums[i] ^ (i)
    }
    return missing
}

231. 2 的幂(easy)

给你一个整数 n,请你判断该整数是否是 2 的幂次方。如果是,返回 true ;否则,返回 false 。

如果存在一个整数 x 使得 n == 2x ,则认为 n 是 2 的幂次方。

示例 1:

输入:n = 1
输出:true
解释:20 = 1
示例 2:

输入:n = 16
输出:true
解释:24 = 16
示例 3:

输入:n = 3
输出:false
示例 4:

输入:n = 4
输出:true
示例 5:

输入:n = 5
输出:false

提示:

-231 <= n <= 231 - 1

进阶:你能够不使用循环/递归解决此问题吗?

方法1.二进制
  • 思路:一个数是2的幂需要满足这个数的二进制中只有一个1,也就是需要满足这个数>0,同时消除唯一的一个1之后就是0
  • 复杂度:时间复杂度O(1)。空间复杂度O(1)

Js:

var isPowerOfTwo = function(n) {
    return n > 0 && (n & (n - 1)) === 0;
};
方法2.是否为最大 2的幂的约数
  • 思路:最大的2的幂为 2^30 = 1073741824, 判断 n 是否是 2^30 的约数即可。
  • 复杂度:时间复杂度O(1)。空间复杂度O(1)

js:

var isPowerOfTwo = function(n) {
    const MAX = 1 << 30;
    return n > 0 && MAX % n === 0;
};

389. 找不同( easy)

给定两个字符串 s 和 t ,它们只包含小写字母。

字符串 t 由字符串 s 随机重排,然后在随机位置添加一个字母。

请找出在 t 中被添加的字母。

示例 1:

输入:s = "abcd", t = "abcde"
输出:"e"
解释:'e' 是那个被添加的字母。
示例 2:

输入:s = "", t = "y"
输出:"y"

提示:

0 <= s.length <= 1000
t.length == s.length + 1
s 和 t 只包含小写字母

方法1.计数
  • 思路:循环字符串s 统计每个字符的个数,循环字符串t 每出现一次s中的字符 就让相应字符的数量减少1,如果字符减少到了小于0 则这个字符就是答案
  • 复杂度:时间复杂度O(n),n是字符串的长度。空间复杂度O(k),k是字符集的大小

js:

var findTheDifference = function(s, t) {
    const cnt = new Array(26).fill(0);
    for (const ch of s) {//循环字符串s 统计每个字符的个数
        cnt[ch.charCodeAt() - 'a'.charCodeAt()]++;
    }
    for (const ch of t) {//循环字符串t 每出现一次s中的字符 就让相应字符的数量减少1
        cnt[ch.charCodeAt() - 'a'.charCodeAt()]--;
        if (cnt[ch.charCodeAt() - 'a'.charCodeAt()] < 0) {//如果字符减少到了小于0 则这个字符就是答案
            return ch;
        }
    }
    return ' ';
};
方法2.求和
  • 思路:统计字符串s和t中字符Unicode的总和,两个和的差 就是不同的字符
  • 复杂度:时间复杂度O(n)。空间复杂度O(1)

js:

var findTheDifference = function(s, t) {
    let as = 0, at = 0;
    for (let i = 0; i < s.length; i++) {//统计字符串s中字符Unicode值的总和
        as += s[i].charCodeAt();
    }
    for (let i = 0; i < t.length; i++) {//统计字符串t中字符Unicode值的总和
        at += t[i].charCodeAt();
    }
    return String.fromCharCode(at - as);//两个和的差 就是不同的字符
};
方3.位运算
  • 思路:循环s和t 不断异或 相同元素异或等于0 所以唯一不同的字符最后会留下来
  • 复杂度:时间复杂度O(n)。空间复杂度O(1)

js:

//s = "abcd", t = "abcde"
var findTheDifference = function(s, t) {
    let ret = 0;//循环s和t 不断异或 相同元素异或等于0 所以唯一不同的字符最后会留下来
    for (const ch of s) {
        ret ^= ch.charCodeAt();
    }
    for (const ch of t) {
        ret ^= ch.charCodeAt();
    }
    return String.fromCharCode(ret);
};

338. 比特位计数 (easy)

给你一个整数 n ,对于 0 <= i <= n 中的每个 i ,计算其二进制表示中 1 的个数 ,返回一个长度为 n + 1 的数组 ans 作为答案。

示例 1:

输入:n = 2
输出:[0,1,1]
解释:
0 --> 0
1 --> 1
2 --> 10
示例 2:

输入:n = 5
输出:[0,1,1,2,1,2]
解释:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101

提示:

0 <= n <= 105

进阶:

很容易就能实现时间复杂度为 O(n log n) 的解决方案,你可以在线性时间复杂度 O(n) 内用一趟扫描解决此问题吗?
你能不使用任何内置函数解决此问题吗?(如,C++ 中的 __builtin_popcount )

方法1.循环
  • 思路:循环0-n,计算每个数二进制中1的个数。
  • 复杂度:时间复杂度O(nk),k一个整数统计二进制1的复杂度,最坏的情况下是k=32。空间复杂度是O(1)

js:

var countBits = function(n) {
    const bits = new Array(n + 1).fill(0);
    for (let i = 0; i <= n; i++) {
        bits[i] = countOnes(i);
    }
    return bits
};

const countOnes = (x) => {
    let ones = 0;
    while (x > 0) {
        x &= (x - 1);
        ones++;
    }
    return ones;
}
方法2.动态规划
  • 思路:bits[i]表示i的二进制中1的个数,那么bits[i-1]就是bits[i]拿掉一个1之后的值,i & (i - 1)就是去掉最低位的一个1.

所以状态转移方程就是bits[i] = bits[i & (i - 1)] + 1,不断循环计算出从1-n中每个数二进制中1的个数即可

  • 复杂度:时间复杂度O(n)。空间复杂度是O(1)

Js:

var countBits = function(n) {
    const bits = new Array(n + 1).fill(0);
    for (let i = 1; i <= n; i++) {
        bits[i] = bits[i & (i - 1)] + 1;
    }
    return bits;
};

视频讲解:传送门

你可能感兴趣的:(用javascript分类刷leetcode9.位运算(图文视频讲解))