DeepFM模型原理与案例实现

DeepFM

  • 1.模型基本原理
    • 1.1 模型结构
    • 1.2 模型原理
  • 2.Tensorflow实现
  • 3.小结

DNN模型和 FM 模型的结合成DeepFM,由wide&deep模型演变而来,FM取代wide的LR模型,解决特征交叉问题。

1.模型基本原理

1.1 模型结构

DeepFM 是由哈工大和华为公司联合提出的深度学习模型,架构示意图:
DeepFM模型原理与案例实现_第1张图片
可以看到,DeepFM 利用了 Wide&Deep 组合模型的思想,用 FM 替换了 Wide&Deep 左边的 Wide 部分,加强了浅层网络部分特征组合的能力,而右边的部分跟 Wide&Deep 的 Deep 部分一样,主要利用多层神经网络进行所有特征的深层处理,最后的输出层是把 FM 部分的输出和 Deep 部分的输出综合起来,产生最后的预估结果。

1.2 模型原理

2.Tensorflow实现

def model_fn(features, labels, mode, params):
    """Bulid Model function f(x) for Estimator."""
    #------超参数的设定----
    field_size = params["field_size"]
    feature_size = params["feature_size"]
    embedding_size = params["embedding_size"]
    l2_reg = params["l2_reg"]
    learning_rate = params["learning_rate"]
    #batch_norm_decay = params["batch_norm_decay"]
    #optimizer = params["optimizer"]
    layers = map(int, params["deep_layers"].split(','))
    dropout = map(float, params["dropout"].split(','))

    #------权重------
    FM_B = tf.get_variable(name='fm_bias', shape=[1], initializer=tf.constant_initializer(0.0))
    FM_W = tf.get_variable(name='fm_w', shape=[feature_size], initializer=tf.glorot_normal_initializer())
    # F
    FM_V = tf.get_variable(name='fm_v', shape=[feature_size, embedding_size], initializer=tf.glorot_normal_initializer())
    # F * E    
    #------build feaure-------
    feat_ids  = features['feat_ids']
    feat_ids = tf.reshape(feat_ids,shape=[-1,field_size]) # None * f/K * K
    feat_vals = features['feat_vals']
    feat_vals = tf.reshape(feat_vals,shape=[-1,field_size]) # None * f/K * K

    #------build f(x)------
    with tf.variable_scope("First-order"):
        feat_wgts = tf.nn.embedding_lookup(FM_W, feat_ids) # None * f/K * K
        y_w = tf.reduce_sum(tf.multiply(feat_wgts, feat_vals),1) 

    with tf.variable_scope("Second-order"):
        embeddings = tf.nn.embedding_lookup(FM_V, feat_ids) # None * f/K * K * E
        feat_vals = tf.reshape(feat_vals, shape=[-1, field_size, 1]) # None * f/K * K * 1 ?
        embeddings = tf.multiply(embeddings, feat_vals) #vij*xi  
        sum_square = tf.square(tf.reduce_sum(embeddings,1)) # None * K * E
        square_sum = tf.reduce_sum(tf.square(embeddings),1)
        y_v = 0.5*tf.reduce_sum(tf.subtract(sum_square, square_sum),1)	# None * 1

    with tf.variable_scope("Deep-part"):
        if FLAGS.batch_norm:
            #normalizer_fn = tf.contrib.layers.batch_norm
            #normalizer_fn = tf.layers.batch_normalization
            if mode == tf.estimator.ModeKeys.TRAIN:
                train_phase = True
                #normalizer_params = {'decay': batch_norm_decay, 'center': True, 'scale': True, 'updates_collections': None, 'is_training': True, 'reuse': None}
            else:
                train_phase = False
                #normalizer_params = {'decay': batch_norm_decay, 'center': True, 'scale': True, 'updates_collections': None, 'is_training': False, 'reuse': True}
        else:
            normalizer_fn = None
            normalizer_params = None

        deep_inputs = tf.reshape(embeddings,shape=[-1,field_size*embedding_size]) # None * (F*K)
        for i in range(len(layers)):
            #if FLAGS.batch_norm:
            #    deep_inputs = batch_norm_layer(deep_inputs, train_phase=train_phase, scope_bn='bn_%d' %i)
                #normalizer_params.update({'scope': 'bn_%d' %i})
            deep_inputs = tf.contrib.layers.fully_connected(inputs=deep_inputs, num_outputs=layers[i], \
                #normalizer_fn=normalizer_fn, normalizer_params=normalizer_params, \
                weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg), scope='mlp%d' % i)
            if FLAGS.batch_norm:
                deep_inputs = batch_norm_layer(deep_inputs, train_phase=train_phase, scope_bn='bn_%d' %i)   #放在RELU之后 https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
            if mode == tf.estimator.ModeKeys.TRAIN:
                deep_inputs = tf.nn.dropout(deep_inputs, keep_prob=dropout[i])                              #Apply Dropout after all BN layers and set dropout=0.8(drop_ratio=0.2)
                #deep_inputs = tf.layers.dropout(inputs=deep_inputs, rate=dropout[i], training=mode == tf.estimator.ModeKeys.TRAIN)

        y_deep = tf.contrib.layers.fully_connected(inputs=deep_inputs, num_outputs=1, activation_fn=tf.identity, \
                weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg), scope='deep_out')
        y_d = tf.reshape(y_deep,shape=[-1])
        #sig_wgts = tf.get_variable(name='sigmoid_weights', shape=[layers[-1]], initializer=tf.glorot_normal_initializer())
        #sig_bias = tf.get_variable(name='sigmoid_bias', shape=[1], initializer=tf.constant_initializer(0.0))
        #deep_out = tf.nn.xw_plus_b(deep_inputs,sig_wgts,sig_bias,name='deep_out')

    with tf.variable_scope("DeepFM-out"):
        #y_bias = FM_B * tf.ones_like(labels, dtype=tf.float32)  # None * 1  warning;这里不能用label,否则调用predict/export函数会出错,train/evaluate正常;初步判断estimator做了优化,用不到label时不传
        y_bias = FM_B * tf.ones_like(y_d, dtype=tf.float32)     # None * 1
        y = y_bias + y_w + y_v + y_d
        pred = tf.sigmoid(y)

    predictions={"prob": pred}
    export_outputs = {tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: tf.estimator.export.PredictOutput(predictions)}
    # Provide an estimator spec for `ModeKeys.PREDICT`
    if mode == tf.estimator.ModeKeys.PREDICT:
        return tf.estimator.EstimatorSpec(
                mode=mode,
                predictions=predictions,
                export_outputs=export_outputs)

    #------bulid loss------
    loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=y, labels=labels)) + \
        l2_reg * tf.nn.l2_loss(FM_W) + \
        l2_reg * tf.nn.l2_loss(FM_V) #+ \ l2_reg * tf.nn.l2_loss(sig_wgts)

    # Provide an estimator spec for `ModeKeys.EVAL`
    eval_metric_ops = {
        "auc": tf.metrics.auc(labels, pred)
    }
    if mode == tf.estimator.ModeKeys.EVAL:
        return tf.estimator.EstimatorSpec(
                mode=mode,
                predictions=predictions,
                loss=loss,
                eval_metric_ops=eval_metric_ops)

    #------bulid optimizer------
    if FLAGS.optimizer == 'Adam':
        optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-8)
    elif FLAGS.optimizer == 'Adagrad':
        optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate, initial_accumulator_value=1e-8)
    elif FLAGS.optimizer == 'Momentum':
        optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.95)
    elif FLAGS.optimizer == 'ftrl':
        optimizer = tf.train.FtrlOptimizer(learning_rate)

    train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())

    # Provide an estimator spec for `ModeKeys.TRAIN` modes
    if mode == tf.estimator.ModeKeys.TRAIN:
        return tf.estimator.EstimatorSpec(
                mode=mode,
                predictions=predictions,
                loss=loss,
                train_op=train_op)

在movie数据集上的模型定义:


item_emb_layer = tf.keras.layers.DenseFeatures([movie_emb_col])(inputs)
user_emb_layer = tf.keras.layers.DenseFeatures([user_emb_col])(inputs)
item_genre_emb_layer = tf.keras.layers.DenseFeatures([item_genre_emb_col])(inputs)
user_genre_emb_layer = tf.keras.layers.DenseFeatures([user_genre_emb_col])(inputs)


# FM part, cross different categorical feature embeddings
product_layer_item_user = tf.keras.layers.Dot(axes=1)([item_emb_layer, user_emb_layer])
product_layer_item_genre_user_genre = tf.keras.layers.Dot(axes=1)([item_genre_emb_layer, user_genre_emb_layer])
product_layer_item_genre_user = tf.keras.layers.Dot(axes=1)([item_genre_emb_layer, user_emb_layer])
product_layer_user_genre_item = tf.keras.layers.Dot(axes=1)([item_emb_layer, user_genre_emb_layer])


# deep part, MLP to generalize all input features
deep = tf.keras.layers.DenseFeatures(deep_feature_columns)(inputs)
deep = tf.keras.layers.Dense(64, activation='relu')(deep)
deep = tf.keras.layers.Dense(64, activation='relu')(deep)


# concatenate fm part and deep part
concat_layer = tf.keras.layers.concatenate([product_layer_item_user, product_layer_item_genre_user_genre,
                                            product_layer_item_genre_user, product_layer_user_genre_item, deep], axis=1)
output_layer = tf.keras.layers.Dense(1, activation='sigmoid')(concat_layer)


model = tf.keras.Model(inputs, output_lay)

在整个实践的过程中,一个是 FM 部分的构建,另一个是 FM 部分的输出和 Deep 输出的连接。

在构建 FM 部分的时候,先为 FM 部分选择了 4 个用于交叉的类别型特征,分别是用户 ID、电影 ID、用户喜欢的风格和电影自己的风格。接着,使用 Dot layer 把用户特征和电影特征两两交叉,这就完成了 FM 部分的构建。

而 Deep 部分的实现,其实和之前实现过的 Wide&Deep 模型的 Deep 部分完全一样。只不过,最终使用 concatenate 层,去把 FM 部分的输出和 Deep 部分的输出连接起来,输入到输出层的 sigmoid 神经元,从而产生最终的预估分数。

3.小结

DeepFM 模型在解决特征交叉问题上非常有优势,它会使用一个独特的 FM 层来专门处理特征之间的交叉问题。具体来说,就是使用点积、元素积等操作让不同特征之间进行两两组合,再把组合后的结果输入的输出神经元中,这会大大加强模型特征组合的能力。因此,DeepFM 模型相比于 Embedding MLP、Wide&Deep 等模型,往往具有更好的推荐效果。

实现 DeepFM 模型的过程并不困难,我们主要记住三点就可以了:

  • 由 FM 和 Deep 两部分组成的;
  • 在实现 FM 部分特征交叉层的时候,使用了多个 Dot Product 操作单元完成不同特征的两两交叉;
  • Deep 部分则与 Wide&Deep 模型一样,负责所有输入特征的深度拟合,提高模型整体的表达能力

参考:

  • DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
  • 王喆,深度学习推荐系统

你可能感兴趣的:(#,推荐算法,#,TensorFlow2.0,DeepFM,Tensorflow,推荐算法,深度因子分解机)