首先呢,免责声明一下。
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2014, Itseez, Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
咳咳,正事开始吧,sobel的深度学习卷积网络部分的c语言源码。
本身openCV是基于C++底层语言开发的,so,回归一下。
#include "precomp.hpp"
#include "opencl_kernels_imgproc.hpp"
#include "opencv2/core/hal/intrin.hpp"
#include
#include "opencv2/core/openvx/ovx_defs.hpp"
namespace cv
{
#ifdef HAVE_IPP
static bool ipp_Canny(const Mat& src , const Mat& dx_, const Mat& dy_, Mat& dst, float low, float high, bool L2gradient, int aperture_size)
{
#ifdef HAVE_IPP_IW
CV_INSTRUMENT_REGION_IPP();
#if IPP_DISABLE_PERF_CANNY_MT
if(cv::getNumThreads()>1)
return false;
#endif
::ipp::IwiSize size(dst.cols, dst.rows);
IppDataType type = ippiGetDataType(dst.depth());
int channels = dst.channels();
IppNormType norm = (L2gradient)?ippNormL2:ippNormL1;
if(size.width <= 3 || size.height <= 3)
return false;
if(channels != 1)
return false;
if(type != ipp8u)
return false;
if(src.empty())
{
try
{
::ipp::IwiImage iwSrcDx;
::ipp::IwiImage iwSrcDy;
::ipp::IwiImage iwDst;
ippiGetImage(dx_, iwSrcDx);
ippiGetImage(dy_, iwSrcDy);
ippiGetImage(dst, iwDst);
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterCannyDeriv, iwSrcDx, iwSrcDy, iwDst, low, high, ::ipp::IwiFilterCannyDerivParams(norm));
}
catch (const ::ipp::IwException &)
{
return false;
}
}
else
{
IppiMaskSize kernel;
if(aperture_size == 3)
kernel = ippMskSize3x3;
else if(aperture_size == 5)
kernel = ippMskSize5x5;
else
return false;
try
{
::ipp::IwiImage iwSrc;
::ipp::IwiImage iwDst;
ippiGetImage(src, iwSrc);
ippiGetImage(dst, iwDst);
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterCanny, iwSrc, iwDst, low, high, ::ipp::IwiFilterCannyParams(ippFilterSobel, kernel, norm), ippBorderRepl);
}
catch (const ::ipp::IwException &)
{
return false;
}
}
return true;
#else
CV_UNUSED(src); CV_UNUSED(dx_); CV_UNUSED(dy_); CV_UNUSED(dst); CV_UNUSED(low); CV_UNUSED(high); CV_UNUSED(L2gradient); CV_UNUSED(aperture_size);
return false;
#endif
}
#endif
#ifdef HAVE_OPENCL
template
static bool ocl_Canny(InputArray _src, const UMat& dx_, const UMat& dy_, OutputArray _dst, float low_thresh, float high_thresh,
int aperture_size, bool L2gradient, int cn, const Size & size)
{
CV_INSTRUMENT_REGION_OPENCL();
UMat map;
const ocl::Device &dev = ocl::Device::getDefault();
int max_wg_size = (int)dev.maxWorkGroupSize();
int lSizeX = 32;
int lSizeY = max_wg_size / 32;
if (lSizeY == 0)
{
lSizeX = 16;
lSizeY = max_wg_size / 16;
}
if (lSizeY == 0)
{
lSizeY = 1;
}
if (aperture_size == 7)
{
low_thresh = low_thresh / 16.0f;
high_thresh = high_thresh / 16.0f;
}
if (L2gradient)
{
low_thresh = std::min(32767.0f, low_thresh);
high_thresh = std::min(32767.0f, high_thresh);
if (low_thresh > 0)
low_thresh *= low_thresh;
if (high_thresh > 0)
high_thresh *= high_thresh;
}
int low = cvFloor(low_thresh), high = cvFloor(high_thresh);
if (!useCustomDeriv &&
aperture_size == 3 && !_src.isSubmatrix())
{
/*
stage1_with_sobel:
Sobel operator
Calc magnitudes
Non maxima suppression
Double thresholding
*/
char cvt[40];
ocl::Kernel with_sobel("stage1_with_sobel", ocl::imgproc::canny_oclsrc,
format("-D WITH_SOBEL -D cn=%d -D TYPE=%s -D convert_floatN=%s -D floatN=%s -D GRP_SIZEX=%d -D GRP_SIZEY=%d%s",
cn, ocl::memopTypeToStr(_src.depth()),
ocl::convertTypeStr(_src.depth(), CV_32F, cn, cvt),
ocl::typeToStr(CV_MAKE_TYPE(CV_32F, cn)),
lSizeX, lSizeY,
L2gradient ? " -D L2GRAD" : ""));
if (with_sobel.empty())
return false;
UMat src = _src.getUMat();
map.create(size, CV_32S);
with_sobel.args(ocl::KernelArg::ReadOnly(src),
ocl::KernelArg::WriteOnlyNoSize(map),
(float) low, (float) high);
size_t globalsize[2] = { (size_t)size.width, (size_t)size.height },
localsize[2] = { (size_t)lSizeX, (size_t)lSizeY };
if (!with_sobel.run(2, globalsize, localsize, false))
return false;
}
else
{
/*
stage1_without_sobel:
Calc magnitudes
Non maxima suppression
Double thresholding
*/
double scale = 1.0;
if (aperture_size == 7)
{
scale = 1 / 16.0;
}
UMat dx, dy;
if (!useCustomDeriv)
{
Sobel(_src, dx, CV_16S, 1, 0, aperture_size, scale, 0, BORDER_REPLICATE);
Sobel(_src, dy, CV_16S, 0, 1, aperture_size, scale, 0, BORDER_REPLICATE);
}
else
{
dx = dx_;
dy = dy_;
}
ocl::Kernel without_sobel("stage1_without_sobel", ocl::imgproc::canny_oclsrc,
format("-D WITHOUT_SOBEL -D cn=%d -D GRP_SIZEX=%d -D GRP_SIZEY=%d%s",
cn, lSizeX, lSizeY, L2gradient ? " -D L2GRAD" : ""));
if (without_sobel.empty())
return false;
map.create(size, CV_32S);
without_sobel.args(ocl::KernelArg::ReadOnlyNoSize(dx), ocl::KernelArg::ReadOnlyNoSize(dy),
ocl::KernelArg::WriteOnly(map),
low, high);
size_t globalsize[2] = { (size_t)size.width, (size_t)size.height },
localsize[2] = { (size_t)lSizeX, (size_t)lSizeY };
if (!without_sobel.run(2, globalsize, localsize, false))
return false;
}
int PIX_PER_WI = 8;
/*
stage2:
hysteresis (add weak edges if they are connected with strong edges)
*/
int sizey = lSizeY / PIX_PER_WI;
if (sizey == 0)
sizey = 1;
size_t globalsize[2] = { (size_t)size.width, ((size_t)size.height + PIX_PER_WI - 1) / PIX_PER_WI }, localsize[2] = { (size_t)lSizeX, (size_t)sizey };
ocl::Kernel edgesHysteresis("stage2_hysteresis", ocl::imgproc::canny_oclsrc,
format("-D STAGE2 -D PIX_PER_WI=%d -D LOCAL_X=%d -D LOCAL_Y=%d",
PIX_PER_WI, lSizeX, sizey));
if (edgesHysteresis.empty())
return false;
edgesHysteresis.args(ocl::KernelArg::ReadWrite(map));
if (!edgesHysteresis.run(2, globalsize, localsize, false))
return false;
// get edges
ocl::Kernel getEdgesKernel("getEdges", ocl::imgproc::canny_oclsrc,
format("-D GET_EDGES -D PIX_PER_WI=%d", PIX_PER_WI));
if (getEdgesKernel.empty())
return false;
_dst.create(size, CV_8UC1);
UMat dst = _dst.getUMat();
getEdgesKernel.args(ocl::KernelArg::ReadOnly(map), ocl::KernelArg::WriteOnlyNoSize(dst));
return getEdgesKernel.run(2, globalsize, NULL, false);
}
#endif
#define CANNY_PUSH(map, stack) *map = 2, stack.push_back(map)
#define CANNY_CHECK(m, high, map, stack) \
if (m > high) \
CANNY_PUSH(map, stack); \
else \
*map = 0
class parallelCanny : public ParallelLoopBody
{
public:
parallelCanny(const Mat &_src, Mat &_map, std::deque &borderPeaksParallel,
int _low, int _high, int _aperture_size, bool _L2gradient) :
src(_src), src2(_src), map(_map), _borderPeaksParallel(borderPeaksParallel),
low(_low), high(_high), aperture_size(_aperture_size), L2gradient(_L2gradient)
{
#if CV_SIMD
for(int i = 0; i < v_int8::nlanes; ++i)
{
smask[i] = 0;
smask[i + v_int8::nlanes] = (schar)-1;
}
if (true)
_map.create(src.rows + 2, (int)alignSize((size_t)(src.cols + CV_SIMD_WIDTH + 1), CV_SIMD_WIDTH), CV_8UC1);
else
#endif
_map.create(src.rows + 2, src.cols + 2, CV_8UC1);
map = _map;
map.row(0).setTo(1);
map.row(src.rows + 1).setTo(1);
mapstep = map.cols;
needGradient = true;
cn = src.channels();
}
parallelCanny(const Mat &_dx, const Mat &_dy, Mat &_map, std::deque &borderPeaksParallel,
int _low, int _high, bool _L2gradient) :
src(_dx), src2(_dy), map(_map), _borderPeaksParallel(borderPeaksParallel),
low(_low), high(_high), aperture_size(0), L2gradient(_L2gradient)
{
#if CV_SIMD
for(int i = 0; i < v_int8::nlanes; ++i)
{
smask[i] = 0;
smask[i + v_int8::nlanes] = (schar)-1;
}
if (true)
_map.create(src.rows + 2, (int)alignSize((size_t)(src.cols + CV_SIMD_WIDTH + 1), CV_SIMD_WIDTH), CV_8UC1);
else
#endif
_map.create(src.rows + 2, src.cols + 2, CV_8UC1);
map = _map;
map.row(0).setTo(1);
map.row(src.rows + 1).setTo(1);
mapstep = map.cols;
needGradient = false;
cn = src.channels();
}
~parallelCanny() {}
parallelCanny& operator=(const parallelCanny&) { return *this; }
void operator()(const Range &boundaries) const CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_DbgAssert(cn > 0);
Mat dx, dy;
AutoBuffer dxMax(0), dyMax(0);
std::deque stack, borderPeaksLocal;
const int rowStart = max(0, boundaries.start - 1), rowEnd = min(src.rows, boundaries.end + 1);
int *_mag_p, *_mag_a, *_mag_n;
short *_dx, *_dy, *_dx_a = NULL, *_dy_a = NULL, *_dx_n = NULL, *_dy_n = NULL;
uchar *_pmap;
double scale = 1.0;
CV_TRACE_REGION("gradient")
if(needGradient)
{
if (aperture_size == 7)
{
scale = 1 / 16.0;
}
Sobel(src.rowRange(rowStart, rowEnd), dx, CV_16S, 1, 0, aperture_size, scale, 0, BORDER_REPLICATE);
Sobel(src.rowRange(rowStart, rowEnd), dy, CV_16S, 0, 1, aperture_size, scale, 0, BORDER_REPLICATE);
}
else
{
dx = src.rowRange(rowStart, rowEnd);
dy = src2.rowRange(rowStart, rowEnd);
}
CV_TRACE_REGION_NEXT("magnitude");
if(cn > 1)
{
dxMax.allocate(2 * dx.cols);
dyMax.allocate(2 * dy.cols);
_dx_a = dxMax.data();
_dx_n = _dx_a + dx.cols;
_dy_a = dyMax.data();
_dy_n = _dy_a + dy.cols;
}
// _mag_p: previous row, _mag_a: actual row, _mag_n: next row
#if CV_SIMD
AutoBuffer buffer(3 * (mapstep * cn + CV_SIMD_WIDTH));
_mag_p = alignPtr(buffer.data() + 1, CV_SIMD_WIDTH);
_mag_a = alignPtr(_mag_p + mapstep * cn, CV_SIMD_WIDTH);
_mag_n = alignPtr(_mag_a + mapstep * cn, CV_SIMD_WIDTH);
#else
AutoBuffer buffer(3 * (mapstep * cn));
_mag_p = buffer.data() + 1;
_mag_a = _mag_p + mapstep * cn;
_mag_n = _mag_a + mapstep * cn;
#endif
// For the first time when just 2 rows are filled and for left and right borders
if(rowStart == boundaries.start)
memset(_mag_n - 1, 0, mapstep * sizeof(int));
else
_mag_n[src.cols] = _mag_n[-1] = 0;
_mag_a[src.cols] = _mag_a[-1] = _mag_p[src.cols] = _mag_p[-1] = 0;
// calculate magnitude and angle of gradient, perform non-maxima suppression.
// fill the map with one of the following values:
// 0 - the pixel might belong to an edge
// 1 - the pixel can not belong to an edge
// 2 - the pixel does belong to an edge
for (int i = rowStart; i <= boundaries.end; ++i)
{
// Scroll the ring buffer
std::swap(_mag_n, _mag_a);
std::swap(_mag_n, _mag_p);
if(i < rowEnd)
{
// Next row calculation
_dx = dx.ptr(i - rowStart);
_dy = dy.ptr(i - rowStart);
if (L2gradient)
{
int j = 0, width = src.cols * cn;
#if CV_SIMD
for ( ; j <= width - v_int16::nlanes; j += v_int16::nlanes)
{
v_int16 v_dx = vx_load((const short*)(_dx + j));
v_int16 v_dy = vx_load((const short*)(_dy + j));
v_int32 v_dxp_low, v_dxp_high;
v_int32 v_dyp_low, v_dyp_high;
v_expand(v_dx, v_dxp_low, v_dxp_high);
v_expand(v_dy, v_dyp_low, v_dyp_high);
v_store_aligned((int *)(_mag_n + j), v_dxp_low*v_dxp_low+v_dyp_low*v_dyp_low);
v_store_aligned((int *)(_mag_n + j + v_int32::nlanes), v_dxp_high*v_dxp_high+v_dyp_high*v_dyp_high);
}
#endif
for ( ; j < width; ++j)
_mag_n[j] = int(_dx[j])*_dx[j] + int(_dy[j])*_dy[j];
}
else
{
int j = 0, width = src.cols * cn;
#if CV_SIMD
for(; j <= width - v_int16::nlanes; j += v_int16::nlanes)
{
v_int16 v_dx = vx_load((const short *)(_dx + j));
v_int16 v_dy = vx_load((const short *)(_dy + j));
v_dx = v_reinterpret_as_s16(v_abs(v_dx));
v_dy = v_reinterpret_as_s16(v_abs(v_dy));
v_int32 v_dx_ml, v_dy_ml, v_dx_mh, v_dy_mh;
v_expand(v_dx, v_dx_ml, v_dx_mh);
v_expand(v_dy, v_dy_ml, v_dy_mh);
v_store_aligned((int *)(_mag_n + j), v_dx_ml + v_dy_ml);
v_store_aligned((int *)(_mag_n + j + v_int32::nlanes), v_dx_mh + v_dy_mh);
}
#endif
for ( ; j < width; ++j)
_mag_n[j] = std::abs(int(_dx[j])) + std::abs(int(_dy[j]));
}
if(cn > 1)
{
std::swap(_dx_n, _dx_a);
std::swap(_dy_n, _dy_a);
for(int j = 0, jn = 0; j < src.cols; ++j, jn += cn)
{
int maxIdx = jn;
for(int k = 1; k < cn; ++k)
if(_mag_n[jn + k] > _mag_n[maxIdx]) maxIdx = jn + k;
_mag_n[j] = _mag_n[maxIdx];
_dx_n[j] = _dx[maxIdx];
_dy_n[j] = _dy[maxIdx];
}
_mag_n[src.cols] = 0;
}
// at the very beginning we do not have a complete ring
// buffer of 3 magnitude rows for non-maxima suppression
if (i <= boundaries.start)
continue;
}
else
{
memset(_mag_n - 1, 0, mapstep * sizeof(int));
if(cn > 1)
{
std::swap(_dx_n, _dx_a);
std::swap(_dy_n, _dy_a);
}
}
// From here actual src row is (i - 1)
// Set left and right border to 1
#if CV_SIMD
if (true)
_pmap = map.ptr(i) + CV_SIMD_WIDTH;
else
#endif
_pmap = map.ptr(i) + 1;
_pmap[src.cols] =_pmap[-1] = 1;
if(cn == 1)
{
_dx = dx.ptr(i - rowStart - 1);
_dy = dy.ptr(i - rowStart - 1);
}
else
{
_dx = _dx_a;
_dy = _dy_a;
}
const int TG22 = 13573;
int j = 0;
#if CV_SIMD
{
const v_int32 v_low = vx_setall_s32(low);
const v_int8 v_one = vx_setall_s8(1);
for (; j <= src.cols - v_int8::nlanes; j += v_int8::nlanes)
{
v_store_aligned((signed char*)(_pmap + j), v_one);
v_int8 v_cmp = v_pack(v_pack(vx_load_aligned((const int*)(_mag_a + j )) > v_low,
vx_load_aligned((const int*)(_mag_a + j + v_int32::nlanes)) > v_low),
v_pack(vx_load_aligned((const int*)(_mag_a + j + 2*v_int32::nlanes)) > v_low,
vx_load_aligned((const int*)(_mag_a + j + 3*v_int32::nlanes)) > v_low));
while (v_check_any(v_cmp))
{
int l = v_scan_forward(v_cmp);
v_cmp &= vx_load(smask + v_int8::nlanes - 1 - l);
int k = j + l;
int m = _mag_a[k];
short xs = _dx[k];
short ys = _dy[k];
int x = (int)std::abs(xs);
int y = (int)std::abs(ys) << 15;
int tg22x = x * TG22;
if (y < tg22x)
{
if (m > _mag_a[k - 1] && m >= _mag_a[k + 1])
{
CANNY_CHECK(m, high, (_pmap+k), stack);
}
}
else
{
int tg67x = tg22x + (x << 16);
if (y > tg67x)
{
if (m > _mag_p[k] && m >= _mag_n[k])
{
CANNY_CHECK(m, high, (_pmap+k), stack);
}
}
else
{
int s = (xs ^ ys) < 0 ? -1 : 1;
if(m > _mag_p[k - s] && m > _mag_n[k + s])
{
CANNY_CHECK(m, high, (_pmap+k), stack);
}
}
}
}
}
}
#endif
for (; j < src.cols; j++)
{
int m = _mag_a[j];
if (m > low)
{
short xs = _dx[j];
short ys = _dy[j];
int x = (int)std::abs(xs);
int y = (int)std::abs(ys) << 15;
int tg22x = x * TG22;
if (y < tg22x)
{
if (m > _mag_a[j - 1] && m >= _mag_a[j + 1])
{
CANNY_CHECK(m, high, (_pmap+j), stack);
continue;
}
}
else
{
int tg67x = tg22x + (x << 16);
if (y > tg67x)
{
if (m > _mag_p[j] && m >= _mag_n[j])
{
CANNY_CHECK(m, high, (_pmap+j), stack);
continue;
}
}
else
{
int s = (xs ^ ys) < 0 ? -1 : 1;
if(m > _mag_p[j - s] && m > _mag_n[j + s])
{
CANNY_CHECK(m, high, (_pmap+j), stack);
continue;
}
}
}
}
_pmap[j] = 1;
}
}
// Not for first row of first slice or last row of last slice
uchar *pmapLower = (rowStart == 0) ? map.data : (map.data + (boundaries.start + 2) * mapstep);
uint pmapDiff = (uint)(((rowEnd == src.rows) ? map.datalimit : (map.data + boundaries.end * mapstep)) - pmapLower);
// now track the edges (hysteresis thresholding)
CV_TRACE_REGION_NEXT("hysteresis");
while (!stack.empty())
{
uchar *m = stack.back();
stack.pop_back();
// Stops thresholding from expanding to other slices by sending pixels in the borders of each
// slice in a queue to be serially processed later.
if((unsigned)(m - pmapLower) < pmapDiff)
{
if (!m[-mapstep-1]) CANNY_PUSH((m-mapstep-1), stack);
if (!m[-mapstep]) CANNY_PUSH((m-mapstep), stack);
if (!m[-mapstep+1]) CANNY_PUSH((m-mapstep+1), stack);
if (!m[-1]) CANNY_PUSH((m-1), stack);
if (!m[1]) CANNY_PUSH((m+1), stack);
if (!m[mapstep-1]) CANNY_PUSH((m+mapstep-1), stack);
if (!m[mapstep]) CANNY_PUSH((m+mapstep), stack);
if (!m[mapstep+1]) CANNY_PUSH((m+mapstep+1), stack);
}
else
{
borderPeaksLocal.push_back(m);
ptrdiff_t mapstep2 = m < pmapLower ? mapstep : -mapstep;
if (!m[-1]) CANNY_PUSH((m-1), stack);
if (!m[1]) CANNY_PUSH((m+1), stack);
if (!m[mapstep2-1]) CANNY_PUSH((m+mapstep2-1), stack);
if (!m[mapstep2]) CANNY_PUSH((m+mapstep2), stack);
if (!m[mapstep2+1]) CANNY_PUSH((m+mapstep2+1), stack);
}
}
if(!borderPeaksLocal.empty())
{
AutoLock lock(mutex);
_borderPeaksParallel.insert(_borderPeaksParallel.end(), borderPeaksLocal.begin(), borderPeaksLocal.end());
}
}
private:
const Mat &src, &src2;
Mat ↦
std::deque &_borderPeaksParallel;
int low, high, aperture_size;
bool L2gradient, needGradient;
ptrdiff_t mapstep;
int cn;
mutable Mutex mutex;
#if CV_SIMD
schar smask[2*v_int8::nlanes];
#endif
};
class finalPass : public ParallelLoopBody
{
public:
finalPass(const Mat &_map, Mat &_dst) :
map(_map), dst(_dst)
{
dst = _dst;
}
~finalPass() {}
void operator()(const Range &boundaries) const CV_OVERRIDE
{
// the final pass, form the final image
for (int i = boundaries.start; i < boundaries.end; i++)
{
int j = 0;
uchar *pdst = dst.ptr(i);
const uchar *pmap = map.ptr(i + 1);
#if CV_SIMD
if (true)
pmap += CV_SIMD_WIDTH;
else
#endif
pmap += 1;
#if CV_SIMD
{
const v_uint8 v_zero = vx_setzero_u8();
const v_uint8 v_ff = ~v_zero;
const v_uint8 v_two = vx_setall_u8(2);
for (; j <= dst.cols - v_uint8::nlanes; j += v_uint8::nlanes)
{
v_uint8 v_pmap = vx_load_aligned((const unsigned char*)(pmap + j));
v_pmap = v_select(v_pmap == v_two, v_ff, v_zero);
v_store((pdst + j), v_pmap);
}
if (j <= dst.cols - v_uint8::nlanes/2)
{
v_uint8 v_pmap = vx_load_low((const unsigned char*)(pmap + j));
v_pmap = v_select(v_pmap == v_two, v_ff, v_zero);
v_store_low((pdst + j), v_pmap);
j += v_uint8::nlanes/2;
}
}
#endif
for (; j < dst.cols; j++)
{
pdst[j] = (uchar)-(pmap[j] >> 1);
}
}
}
private:
const Mat ↦
Mat &dst;
finalPass(const finalPass&); // = delete
finalPass& operator=(const finalPass&); // = delete
};
#ifdef HAVE_OPENVX
namespace ovx {
template <> inline bool skipSmallImages(int w, int h) { return w*h < 640 * 480; }
}
static bool openvx_canny(const Mat& src, Mat& dst, int loVal, int hiVal, int kSize, bool useL2)
{
using namespace ivx;
Context context = ovx::getOpenVXContext();
try
{
Image _src = Image::createFromHandle(
context,
Image::matTypeToFormat(src.type()),
Image::createAddressing(src),
src.data );
Image _dst = Image::createFromHandle(
context,
Image::matTypeToFormat(dst.type()),
Image::createAddressing(dst),
dst.data );
Threshold threshold = Threshold::createRange(context, VX_TYPE_UINT8, saturate_cast(loVal), saturate_cast(hiVal));
#if 0
// the code below is disabled because vxuCannyEdgeDetector()
// ignores context attribute VX_CONTEXT_IMMEDIATE_BORDER
// FIXME: may fail in multithread case
border_t prevBorder = context.immediateBorder();
context.setImmediateBorder(VX_BORDER_REPLICATE);
IVX_CHECK_STATUS( vxuCannyEdgeDetector(context, _src, threshold, kSize, (useL2 ? VX_NORM_L2 : VX_NORM_L1), _dst) );
context.setImmediateBorder(prevBorder);
#else
// alternative code without vxuCannyEdgeDetector()
Graph graph = Graph::create(context);
ivx::Node node = ivx::Node(vxCannyEdgeDetectorNode(graph, _src, threshold, kSize, (useL2 ? VX_NORM_L2 : VX_NORM_L1), _dst) );
node.setBorder(VX_BORDER_REPLICATE);
graph.verify();
graph.process();
#endif
#ifdef VX_VERSION_1_1
_src.swapHandle();
_dst.swapHandle();
#endif
}
catch(const WrapperError& e)
{
VX_DbgThrow(e.what());
}
catch(const RuntimeError& e)
{
VX_DbgThrow(e.what());
}
return true;
}
#endif // HAVE_OPENVX
void Canny( InputArray _src, OutputArray _dst,
double low_thresh, double high_thresh,
int aperture_size, bool L2gradient )
{
CV_INSTRUMENT_REGION();
CV_Assert( _src.depth() == CV_8U );
const Size size = _src.size();
// we don't support inplace parameters in case with RGB/BGR src
CV_Assert((_dst.getObj() != _src.getObj() || _src.type() == CV_8UC1) && "Inplace parameters are not supported");
_dst.create(size, CV_8U);
if (!L2gradient && (aperture_size & CV_CANNY_L2_GRADIENT) == CV_CANNY_L2_GRADIENT)
{
// backward compatibility
aperture_size &= ~CV_CANNY_L2_GRADIENT;
L2gradient = true;
}
if ((aperture_size & 1) == 0 || (aperture_size != -1 && (aperture_size < 3 || aperture_size > 7)))
CV_Error(CV_StsBadFlag, "Aperture size should be odd between 3 and 7");
if (aperture_size == 7)
{
low_thresh = low_thresh / 16.0;
high_thresh = high_thresh / 16.0;
}
if (low_thresh > high_thresh)
std::swap(low_thresh, high_thresh);
CV_OCL_RUN(_dst.isUMat() && (_src.channels() == 1 || _src.channels() == 3),
ocl_Canny(_src, UMat(), UMat(), _dst, (float)low_thresh, (float)high_thresh, aperture_size, L2gradient, _src.channels(), size))
Mat src0 = _src.getMat(), dst = _dst.getMat();
Mat src(src0.size(), src0.type(), src0.data, src0.step);
CALL_HAL(canny, cv_hal_canny, src.data, src.step, dst.data, dst.step, src.cols, src.rows, src.channels(),
low_thresh, high_thresh, aperture_size, L2gradient);
CV_OVX_RUN(
false && /* disabling due to accuracy issues */
src.type() == CV_8UC1 &&
!src.isSubmatrix() &&
src.cols >= aperture_size &&
src.rows >= aperture_size &&
!ovx::skipSmallImages(src.cols, src.rows),
openvx_canny(
src,
dst,
cvFloor(low_thresh),
cvFloor(high_thresh),
aperture_size,
L2gradient ) )
CV_IPP_RUN_FAST(ipp_Canny(src, Mat(), Mat(), dst, (float)low_thresh, (float)high_thresh, L2gradient, aperture_size))
if (L2gradient)
{
low_thresh = std::min(32767.0, low_thresh);
high_thresh = std::min(32767.0, high_thresh);
if (low_thresh > 0) low_thresh *= low_thresh;
if (high_thresh > 0) high_thresh *= high_thresh;
}
int low = cvFloor(low_thresh);
int high = cvFloor(high_thresh);
// If Scharr filter: aperture size is 3, ksize2 is 1
int ksize2 = aperture_size < 0 ? 1 : aperture_size / 2;
// Minimum number of threads should be 1, maximum should not exceed number of CPU's, because of overhead
int numOfThreads = std::max(1, std::min(getNumThreads(), getNumberOfCPUs()));
// Make a fallback for pictures with too few rows.
int grainSize = src.rows / numOfThreads;
int minGrainSize = 2 * (ksize2 + 1);
if (grainSize < minGrainSize)
numOfThreads = std::max(1, src.rows / minGrainSize);
Mat map;
std::deque stack;
parallel_for_(Range(0, src.rows), parallelCanny(src, map, stack, low, high, aperture_size, L2gradient), numOfThreads);
CV_TRACE_REGION("global_hysteresis");
// now track the edges (hysteresis thresholding)
ptrdiff_t mapstep = map.cols;
while (!stack.empty())
{
uchar* m = stack.back();
stack.pop_back();
if (!m[-mapstep-1]) CANNY_PUSH((m-mapstep-1), stack);
if (!m[-mapstep]) CANNY_PUSH((m-mapstep), stack);
if (!m[-mapstep+1]) CANNY_PUSH((m-mapstep+1), stack);
if (!m[-1]) CANNY_PUSH((m-1), stack);
if (!m[1]) CANNY_PUSH((m+1), stack);
if (!m[mapstep-1]) CANNY_PUSH((m+mapstep-1), stack);
if (!m[mapstep]) CANNY_PUSH((m+mapstep), stack);
if (!m[mapstep+1]) CANNY_PUSH((m+mapstep+1), stack);
}
CV_TRACE_REGION_NEXT("finalPass");
parallel_for_(Range(0, src.rows), finalPass(map, dst), src.total()/(double)(1<<16));
}
void Canny( InputArray _dx, InputArray _dy, OutputArray _dst,
double low_thresh, double high_thresh,
bool L2gradient )
{
CV_INSTRUMENT_REGION();
CV_Assert(_dx.dims() == 2);
CV_Assert(_dx.type() == CV_16SC1 || _dx.type() == CV_16SC3);
CV_Assert(_dy.type() == _dx.type());
CV_Assert(_dx.sameSize(_dy));
if (low_thresh > high_thresh)
std::swap(low_thresh, high_thresh);
const Size size = _dx.size();
CV_OCL_RUN(_dst.isUMat(),
ocl_Canny(UMat(), _dx.getUMat(), _dy.getUMat(), _dst, (float)low_thresh, (float)high_thresh, 0, L2gradient, _dx.channels(), size))
_dst.create(size, CV_8U);
Mat dst = _dst.getMat();
Mat dx = _dx.getMat();
Mat dy = _dy.getMat();
CV_IPP_RUN_FAST(ipp_Canny(Mat(), dx, dy, dst, (float)low_thresh, (float)high_thresh, L2gradient, 0))
if (L2gradient)
{
low_thresh = std::min(32767.0, low_thresh);
high_thresh = std::min(32767.0, high_thresh);
if (low_thresh > 0) low_thresh *= low_thresh;
if (high_thresh > 0) high_thresh *= high_thresh;
}
int low = cvFloor(low_thresh);
int high = cvFloor(high_thresh);
std::deque stack;
Mat map;
// Minimum number of threads should be 1, maximum should not exceed number of CPU's, because of overhead
int numOfThreads = std::max(1, std::min(getNumThreads(), getNumberOfCPUs()));
if (dx.rows / numOfThreads < 3)
numOfThreads = std::max(1, dx.rows / 3);
parallel_for_(Range(0, dx.rows), parallelCanny(dx, dy, map, stack, low, high, L2gradient), numOfThreads);
CV_TRACE_REGION("global_hysteresis")
// now track the edges (hysteresis thresholding)
ptrdiff_t mapstep = map.cols;
while (!stack.empty())
{
uchar* m = stack.back();
stack.pop_back();
if (!m[-mapstep-1]) CANNY_PUSH((m-mapstep-1), stack);
if (!m[-mapstep]) CANNY_PUSH((m-mapstep), stack);
if (!m[-mapstep+1]) CANNY_PUSH((m-mapstep+1), stack);
if (!m[-1]) CANNY_PUSH((m-1), stack);
if (!m[1]) CANNY_PUSH((m+1), stack);
if (!m[mapstep-1]) CANNY_PUSH((m+mapstep-1), stack);
if (!m[mapstep]) CANNY_PUSH((m+mapstep), stack);
if (!m[mapstep+1]) CANNY_PUSH((m+mapstep+1), stack);
}
CV_TRACE_REGION_NEXT("finalPass");
parallel_for_(Range(0, dx.rows), finalPass(map, dst), dx.total()/(double)(1<<16));
}
} // namespace cv
void cvCanny( const CvArr* image, CvArr* edges, double threshold1,
double threshold2, int aperture_size )
{
cv::Mat src = cv::cvarrToMat(image), dst = cv::cvarrToMat(edges);
CV_Assert( src.size == dst.size && src.depth() == CV_8U && dst.type() == CV_8U );
cv::Canny(src, dst, threshold1, threshold2, aperture_size & 255,
(aperture_size & CV_CANNY_L2_GRADIENT) != 0);
}
也许吧,原文链接:https://github.com/opencv/opencv/blob/master/modules/imgproc/src/deriv.cpp
参考的三种边缘检测算子其一,未完待续。。灰度或结构等信息的突变位置是图像的边缘,图像的边缘有幅度和方向属性,沿边缘方向像素变化缓慢,垂直边缘方向像素变化剧烈。因此,边缘上的变化能通过梯度计算出来。有下面案例,效果还行。
更多的可以翻看路径下: