Parameters参数
numpy库中一般
axis=0 => 表示列 纵向
axis=1 => 表示行 横向
传入的参数必须是一个多个数组的元组或者列表
a = np.array([ [1,2], [3,4]])
b = np.array([[5,6]])
a,b 是数组
(a, b)是元组
另外需要指定拼接的方向,默认是 axis = 0,
也就是说对0轴的数组对象进行纵向的拼接(纵向的拼接沿着axis= 1方向);
注:一般axis = 0,就是对该轴向的数组进行操作,
操作方向是另外一个轴,即axis=1, 横向拼接。
In [23]: a = np.array([[1, 2], [3, 4]])
In [24]: b = np.array([[5, 6]])
In [25]: np.concatenate((a, b), axis=0)
Out[25]:
array([[1, 2],
[3, 4],
[5, 6]])
,
官方示例
concatenate(...)
concatenate((a1, a2, ...), axis=0)
Join a sequence of arrays along an existing axis.
Parameters
----------
a1, a2, ... : sequence of array_like
The arrays must have the same shape, except in the dimension
corresponding to `axis` (the first, by default).
axis : int, optional
The axis along which the arrays will be joined. Default is 0.
Returns
-------
res : ndarray
The concatenated array.
See Also
--------
ma.concatenate : Concatenate function that preserves input masks.
array_split : Split an array into multiple sub-arrays of equal or
near-equal size.
split : Split array into a list of multiple sub-arrays of equal size.
hsplit : Split array into multiple sub-arrays horizontally (column wise)
vsplit : Split array into multiple sub-arrays vertically (row wise)
dsplit : Split array into multiple sub-arrays along the 3rd axis (depth).
stack : Stack a sequence of arrays along a new axis.
hstack : Stack arrays in sequence horizontally (column wise)
vstack : Stack arrays in sequence vertically (row wise)
dstack : Stack arrays in sequence depth wise (along third dimension)