在翻译模型的基础上,实现对话生成网络,使用改造后的transformer对用户的提问和系统之前的回答分别进行encoder和decoder处理,decoder部分的数据经过处理后就是对当前用户提问的回答。
import numpy as np
import unicodedata
from torch.autograd import Variable
import torch
import re
from collections import Counter
UNK = 0 # 未登录词的标识符对应的词典id
PAD = 1 # padding占位符对应的词典id
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = '2'
# DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
import json
import jieba
# def seq_padding(X, padding=0):
# """
# 对一个batch批次(以单词id表示)的数据进行padding填充对齐长度
# """
# # 计算该批次数据各条数据句子长度
# L = [[len(x) for x in session] for session in X]
# # 获取该批次数据最大句子长度
# session_l = [len(session) for session in X]
# ML = max([max(l) for l in L])
# MSL = max(session_l)
# # 对X中各条数据x进行遍历,如果长度短于该批次数据最大长度ML,则以padding id填充缺失长度ML-len(x)
# x_padding = [[np.concatenate([sentence, [padding] * (ML - len(sentence))])
# if len(sentence) < ML else sentence for sentence in session] for session in X]
# # print('x')
# x_s_padding = [np.concatenate([session, [[padding] * ML for _ in range(MSL - len(session))]])
# if len(session) < MSL else session for session in x_padding]
# return np.array(x_s_padding)
def seq_padding(X, padding=0):
"""
对一个batch批次(以单词id表示)的数据进行padding填充对齐长度
"""
# 计算该批次数据各条数据句子长度
L = [len(x) for x in X]
# 获取该批次数据最大句子长度
ML = max(L)
# 对X中各条数据x进行遍历,如果长度短于该批次数据最大长度ML,则以padding id填充缺失长度ML-len(x)
x_padding = np.array([
np.concatenate([x, [padding] * (ML - len(x))]) if len(x) < ML else x for x in X
])
return x_padding
def subsequent_mask(size):
"Mask out subsequent positions."
# 设定subsequent_mask矩阵的shape
attn_shape = (1, size, size)
# TODO: 生成一个右上角(不含主对角线)为全1,左下角(含主对角线)为全0的subsequent_mask矩阵
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
# TODO: 返回一个右上角(不含主对角线)为全False,左下角(含主对角线)为全True的subsequent_mask矩阵
return torch.from_numpy(subsequent_mask) == 0
class Batch:
"Object for holding a batch of data with mask during training."
def __init__(self, src, trg, pad=0, DEVICE=None):
# 将输入与输出的单词id表示的数据规范成整数类型
# src = src.astype(int)
src = torch.from_numpy(src).to(DEVICE).long()
# print('src=', src.shape, src)
trg = torch.from_numpy(trg).to(DEVICE).long()
# trg = torch.from_numpy(trg).to(DEVICE).long()
self.src = src
# 对于当前输入的句子非空部分进行判断成bool序列
# 并在seq length前面增加一维,形成维度为 1×seq length 的矩阵
self.src_mask = (src != pad).unsqueeze(-2).to(DEVICE)
# 如果输出目标不为空,则需要对decoder要使用到的target句子进行mask
if trg is not None:
# decoder要用到的target输入部分
self.trg = trg[:, :-1]
# decoder训练时应预测输出的target结果
self.trg_y = trg[:, 1:]
# 将target输入部分进行attention mask
self.trg_mask = self.make_std_mask(self.trg, pad).to(DEVICE)
# 将应输出的target结果中实际的词数进行统计
self.ntokens = (self.trg_y != pad).data.sum().to(DEVICE)
# Mask掩码操作
@staticmethod
def make_std_mask(tgt, pad):
"Create a mask to hide padding and future words."
tgt_mask = (tgt != pad).unsqueeze(-2)
tgt_mask = tgt_mask & Variable(subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data))
return tgt_mask
class PrepareData:
def __init__(self, train_file, eval_file, test_file, batch_size, DEVICE):
self.batch_size = batch_size
# 读取数据 并分词
self.train_src, self.train_tgt, _ = self.load_json_data(train_file)
self.eval_src, self.eval_tgt, _ = self.load_json_data(eval_file)
self.test_src, self.test_tgt, _ = self.load_json_data(test_file)
# 构建单词表, 对话问题,需要一个词汇表就够了
self.word_dict, self.total_words, self.index_dict = self.build_dict(self.train_src, self.train_tgt)
self.vocab_cap = len(self.word_dict)
#
# # id化
self.train_src, self.train_tgt = self.wordToID(self.train_src, self.train_tgt, self.word_dict)
self.eval_src, self.eval_tgt = self.wordToID(self.eval_src, self.eval_tgt, self.word_dict)
self.test_src, self.test_tgt = self.wordToID(self.test_src, self.test_tgt, self.word_dict)
# # 划分batch + padding + mask
self.train_data = self.splitBatch(self.train_src, self.train_tgt, batch_size, shuffle=True, DEVICE=DEVICE)
self.eval_data = self.splitBatch(self.eval_src, self.eval_tgt, batch_size, shuffle=False, DEVICE=DEVICE)
self.test_data = self.splitBatch(self.test_src, self.test_tgt, batch_size, shuffle=False, DEVICE=DEVICE)
# self.dev_data = self.splitBatch(self.dev_en, self.dev_cn, batch_size, DEVICE)
def load_json_data(self, path):
file_object = open(path, 'r') # 创建一个文件对象,也是一个可迭代对象
try:
# all_the_text = file_object.read() # 结果为str类型
json_obj = json.load(file_object)
train_src = []
train_tgt = []
meta_info = []
print('len data = ', len(json_obj.keys()))
for key in json_obj.keys():
content = json_obj.get(key)
messages = content.get('messages')
# src = []
# tgt = []
# start_src = True
# start_tgt = True
# end_src = None
# end_tgt = None
src_content = []
for m in messages:
content = m.get('content')
words = jieba.cut(content)
next_content = ['BOS']
src_content.append('BOS')
for w in words:
next_content.append(w)
src_content.append(w)
next_content.append('EOS')
src_content.append('EOS')
role = m.get('role')
if role == 'usr':
# if start_src:
# words_content.insert(0, 'BOT')
# start_src = False
# else:
# words_content.insert(0, 'BOS')
new_list = src_content[:]
train_src.append(new_list)
# end_src = words_content
else:
# if start_tgt:
# words_content.insert(0, 'BOT')
# start_tgt = False
# else:
# words_content.insert(0, 'BOS')
train_tgt.append(next_content)
# end_tgt = words_content
# end_src[-1] = 'EOT'
# end_tgt[-1] = 'EOT'
# train_src.append(src)
# train_tgt.append(tgt)
finally:
file_object.close()
return train_src, train_tgt, meta_info
def build_dict(self, src_dialogs, tgt_dialogs, max_words=60000):
"""
传入load_data构造的分词后的列表数据
构建词典(key为单词,value为id值)
"""
# 对数据中所有单词进行计数
# print('sentences=', sentences)
word_count = Counter()
for ss in src_dialogs:
for w in ss:
word_count[w] += 1
for ss1 in tgt_dialogs:
for w1 in ss1:
word_count[w1] += 1
ls = word_count.most_common(max_words)
# 统计词典的总词数
total_words = len(ls) + 2
word_dict = {w[0]: index + 2 for index, w in enumerate(ls)}
word_dict['UNK'] = UNK
word_dict['PAD'] = PAD
# 再构建一个反向的词典,供id转单词使用
index_dict = {v: k for k, v in word_dict.items()}
return word_dict, total_words, index_dict
def wordToID(self, train_src, train_tgt, word_dict, sort=True):
"""
将对话数据id话
"""
out_src_ids = [[word_dict.get(w, 0) for w in sent] for sent in train_src]
out_tgt_ids = [[word_dict.get(w, 0) for w in sent] for sent in train_tgt]
return out_src_ids, out_tgt_ids
def splitBatch(self, src, tgt, batch_size, shuffle=True, DEVICE=None):
"""
将以单词id列表表示的翻译前(英文)数据和翻译后(中文)数据
按照指定的batch_size进行划分
如果shuffle参数为True,则会对这些batch数据顺序进行随机打乱
"""
# 在按数据长度生成的各条数据下标列表[0, 1, ..., len(en)-1]中
# 每隔指定长度(batch_size)取一个下标作为后续生成batch的起始下标
idx_list = np.arange(0, len(src), batch_size)
# 如果shuffle参数为True,则将这些各batch起始下标打乱
if shuffle:
np.random.shuffle(idx_list)
# 存放各个batch批次的句子数据索引下标
batch_indexs = []
for idx in idx_list:
# 注意,起始下标最大的那个batch可能会超出数据大小
# 因此要限定其终止下标不能超过数据大小
batch_indexs.append(np.arange(idx, min(idx + batch_size, len(src))))
# 按各batch批次的句子数据索引下标,构建实际的单词id列表表示的各batch句子数据
batches = []
for batch_index in batch_indexs:
# 按当前batch的各句子下标(数组批量索引)提取对应的单词id列表句子表示数据
batch_src = [src[index] for index in batch_index]
batch_tgt = [tgt[index] for index in batch_index]
# 对当前batch的各个句子都进行padding对齐长度
# 维度为:batch数量×batch_size×每个batch最大句子长度
batch_src = seq_padding(batch_src)
batch_tgt = seq_padding(batch_tgt)
# 将当前batch的英文和中文数据添加到存放所有batch数据的列表中
batches.append(Batch(batch_src, batch_tgt, DEVICE=DEVICE))
return batches
if __name__ == '__main__':
train = '../data/dialogue/eval.json'
eval = '../data/dialogue/eval.json'
test = '../data/dialogue/eval.json'
prepareData = PrepareData(train, eval, test, 12, None)
# train_src, train_tgt, meta_info = prepareData.load_json_data(path)
# print('train_src=', train_src)
# print('\n\n========================\n\n')
# print('train_tgt=', train_tgt)
# words = jieba.cut('行,我都详细记录了,玩好了,接下来我想找一家豪华型的酒店住,你看有什么好的推荐没有啊?')
# for w in words:
# print('w=', w)
import time
import torch
import torch.nn as nn
from torch.autograd import Variable
import os
import random
from dialogue_data_generator import *
import numpy as np
from dialogue_transformer_models import *
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class CustomLearnRateOptimizer:
"Optim wrapper that implements rate."
def __init__(self, model_size, factor, warmup, model):
self.optimizer = torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)
self._step = 0
self.warmup = warmup
self.factor = factor
self.model_size = model_size
self._rate = 0
def step(self):
"Update parameters and rate"
self._step += 1
rate = self.rate()
for p in self.optimizer.param_groups:
p['lr'] = rate
self._rate = rate
self.optimizer.step()
def rate(self, step=None):
"Implement `lrate` above"
if step is None:
step = self._step
return self.factor * (self.model_size ** (-0.5) * min(step ** (-0.5), step * self.warmup ** (-1.5)))
class LabelSmoothingLoss(nn.Module):
"""标签平滑处理"""
def __init__(self, size, padding_idx=0, smoothing=0.0):
super(LabelSmoothingLoss, self).__init__()
self.criterion = nn.KLDivLoss(reduction='sum')
self.padding_idx = padding_idx
self.confidence = 1.0 - smoothing
self.smoothing = smoothing
self.size = size
self.true_dist = None
def forward(self, x, target):
assert x.size(1) == self.size
x = x.to(DEVICE)
target = target.to(DEVICE)
true_dist = x.data.clone()
true_dist.fill_(self.smoothing / (self.size - 2))
true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence)
true_dist[:, self.padding_idx] = 0
mask = torch.nonzero(target.data == self.padding_idx)
if mask.dim() > 0:
true_dist.index_fill_(0, mask.squeeze(), 0.0)
self.true_dist = true_dist
return self.criterion(x, Variable(true_dist, requires_grad=False))
class Trainer:
def __init__(self, epochs, tgt_vocab, D_MODEL, model, SAVE_FILE='model1.pt', MAX_LENGTH=100):
self.epochs = epochs
self.loss = LabelSmoothingLoss(tgt_vocab)
self.optimizer = CustomLearnRateOptimizer(D_MODEL, 1, 2000, model)
self.SAVE_FILE = SAVE_FILE
self.MAX_LENGTH = MAX_LENGTH
self.model = model
def compute_loss(self, x, y, norm):
# 计算loss,并且反向传播
loss = self.loss(x.contiguous().view(-1, x.size(-1)), y.contiguous().view(-1)) / norm
# print('loss=', loss.shape, loss)
loss.backward()
if self.optimizer is not None:
self.optimizer.step()
self.optimizer.optimizer.zero_grad()
return loss.data.item() * norm.float()
def train(self, data):
"""
训练并保存模型
"""
for p in self.model.parameters():
if p.dim() > 1:
# 这里初始化采用的是nn.init.xavier_uniform
nn.init.xavier_uniform_(p)
# 初始化模型在dev集上的最优Loss为一个较大值
best_dev_loss = 1e5
for epoch in range(self.epochs):
# 模型训练
self.model.train()
self.run_epoch(data.train_data, self.model, epoch)
self.model.eval()
# 在dev集上进行loss评估
print('>>>>> Evaluate')
dev_loss = self.run_epoch(data.eval_data, self.model, epoch, max_step=200)
print('<<<<< Evaluate loss: %f' % dev_loss)
# # TODO: 如果当前epoch的模型在dev集上的loss优于之前记录的最优loss则保存当前模型,并更新最优loss值
if dev_loss < best_dev_loss:
print('saving model...')
torch.save(self.model.state_dict(), self.SAVE_FILE)
best_dev_loss = dev_loss
print('>>>>>>>>>>>>>>> Evaluate case, epach=%d' % epoch)
self.evaluate(data)
print('>>>>>>>>>>>>>>> end evaluate case, epach=%d' % epoch)
def run_epoch(self, data, model, epoch, max_step=1000):
start = time.time()
total_tokens = 0.
total_loss = 0.
tokens = 0.
# print('data=', len(data), data)
for i, batch in enumerate(data):
if i>=max_step:
break
# print('batch.src=', batch.src, batch.src.shape)
# print('batch.trg=', batch.trg, batch.trg.shape)
out = model(batch.src, batch.trg, batch.src_mask, batch.trg_mask)
loss = self.compute_loss(out, batch.trg_y, batch.ntokens)
total_loss += loss
total_tokens += batch.ntokens
tokens += batch.ntokens
if i % 100 == 1:
elapsed = time.time() - start
print("Epoch %d Batch: %d Loss: %f Tokens per Sec: %fs" % (epoch, i - 1, loss / batch.ntokens, (tokens.float() / elapsed / 1000.)))
start = time.time()
tokens = 0
return total_loss / total_tokens
def evaluate(self, data):
"""
在data上用训练好的模型进行预测,打印模型翻译结果
"""
# 梯度清零
with torch.no_grad():
# 在data的英文数据长度上遍历下标
s = random.randint(0, len(data.test_src) - 15)
for j in range(10):
i = s + j
# print('i=', i)
# TODO: 打印待翻译的src句子
cn_sent = " ".join([data.index_dict[w] for w in data.test_src[i]])
items = cn_sent.split('EOS BOS')
print("\nusr: " + items[-1])
# TODO: 打印对应的tgt答案
en_sent = " ".join([data.index_dict[w] for w in data.test_tgt[i]])
print('origin:',"".join(en_sent))
# 将当前以单词id表示的英文句子数据转为tensor,并放如DEVICE中
src = torch.from_numpy(np.array(data.test_src[i])).long().to(DEVICE)
# 增加一维
src = src.unsqueeze(0)
# 设置attention mask
src_mask = (src != 0).unsqueeze(-2)
# 用训练好的模型进行decode预测
out = self.greedy_decode(src, src_mask, max_len=self.MAX_LENGTH, start_symbol=data.word_dict["BOS"])
# 初始化一个用于存放模型翻译结果句子单词的列表
translation = []
# 遍历翻译输出字符的下标(注意:开始符"BOS"的索引0不遍历)
for j in range(1, out.size(1)):
# 获取当前下标的输出字符
sym = data.index_dict[out[0, j].item()]
# 如果输出字符不为'EOS'终止符,则添加到当前句子的翻译结果列表
if sym != 'EOS':
translation.append(sym)
# 否则终止遍历
else:
break
# 打印模型翻译输出的中文句子结果
print("sys: %s\n" % " ".join(translation))
def greedy_decode(self, src, src_mask, max_len, start_symbol):
"""
传入一个训练好的模型,对指定数据进行预测
"""
# 先用encoder进行encode
memory = self.model.encode(src, src_mask)
# print('src=', src.shape, src)
# print('src_mask=', src_mask.shape, src_mask)
# print('memory=', memory.shape, memory)
# 初始化预测内容为1×1的tensor,填入开始符('BOS')的id,并将type设置为输入数据类型(LongTensor)
ys = torch.ones(1, 1).fill_(start_symbol).type_as(src.data)
# print('ys=', ys.shape, ys)
# 遍历输出的长度下标
for i in range(max_len - 1):
# decode得到隐层表示
tgt_msk = subsequent_mask(ys.size(1)).type_as(src.data)
# print('i=',i,'tgt_msk=', tgt_msk)
out = self.model.decode(memory,
src_mask,
Variable(ys),
Variable(tgt_msk))
# 将隐藏表示转为对词典各词的log_softmax概率分布表示
# print('i=',i,'out=', out.shape, out)
# out1 = out[:, -1]
# print('out1=', out1, out1.shape)
# prob = model.generator(out[:, -1])
# 获取当前位置最大概率的预测词id
_, next_word = torch.max(out, dim=2)
# print('i = ', i, ', out=', out.shape, out)
# print('i = ', i, ', next_word=', next_word.shape, next_word)
next_word = next_word.data[0, -1]
# 将当前位置预测的字符id与之前的预测内容拼接起来
ys = torch.cat([ys, torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1)
# print('i = ', i, ' ,next_word=', next_word, ', ys=', ys)
return ys
if __name__=='__main__':
TRAIN_FILE = '../data/dialogue/eval.json'
DEV_FILE = '../data/dialogue/eval.json'
TEST_FILE = '../data/dialogue/test.json'
SAVE_FILE = 'model_dialog.pt'
h = 8
d_model = 512
d_ff = 2048
dropout = 0.1
N = 6
epochs = 1
# batch_size = 64
batch_size = 16
print('<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>\n1.start prepare data++++++++++++++++++++++\n' )
data = PrepareData(TRAIN_FILE, DEV_FILE, TEST_FILE, batch_size, DEVICE)
print("vocab_cap %d" % data.vocab_cap)
print('self.train.len = ', len(data.train_src))
print('self.eval.len = ', len(data.eval_src))
print('self.test.len = ', len(data.test_src))
print('\n2.start to train++++++++++++++++++++++++\n')
transformer = Transformer(h, d_model, d_ff, dropout, N, data.vocab_cap, data.vocab_cap, DEVICE).to(DEVICE)
trainer = Trainer(epochs, data.vocab_cap, d_model, transformer, SAVE_FILE=SAVE_FILE, MAX_LENGTH=20)
trainer.train(data)
print('\n3.start to eval++++++++++++++++++++++++\n')
transformer.load_state_dict(torch.load(SAVE_FILE))
# trainer = Trainer(epochs, data.tgt_vocab, d_model, transformer, SAVE_FILE='model1.pt', MAX_LENGTH=5)
trainer.evaluate(data)