YOLOV5环境搭建以及训练COCO128数据集

前言

记录了自己训练coco128的全过程

手把手教你YOLOV5环境搭建以及训练COCO128数据集。相关配置文件在百度网盘中。

如果懒得话可以直接全部用我的数据

一、准备工作

1.1创建环境

打开anaconda power shell(最好以管理员身份运行,免得到后面相关文件权限进不去)

conda create -n yolov5coco python=3.8

1.2激活环境

conda activate yolov5coco

1.3下载pytorch等基本需求

pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

二、配置环境

2.1下载源码

2.1.1直接git到本地(很多人可能没有配置Git)

git clone https://github.com/ultralytics/yolov5

2.1.2下载zip解压到当前环境下

YOLOV5环境搭建以及训练COCO128数据集_第1张图片

2.2安装各种依赖

cd到yolov5文件夹下

pip install -U -r requirements.txt

三、相关文件下载

3.1下载权重

我用的主要是比较小的模型权重v5s和v5x。百度网盘链接(其中包含了coco128):

https://pan.baidu.com/s/11c49TfGtqAzHAEX3WdEBwA?pwd=3rzb

提取码:3rzb

YOLOV5环境搭建以及训练COCO128数据集_第2张图片

将下载好的yolov5s.pt放置到当前文件夹下如图

3.2简单测试

当前目录创建iference/images,并随机放置几张照片,测试bus以及zidame.

python detect.py --source inference/images/ --weights ./yolov5s.pt
YOLOV5环境搭建以及训练COCO128数据集_第3张图片

3.3coco128数据集下载

coco128数据集已经放置在上述百度网盘文件中。附下载链接:https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip。下载解压以后我们将文件夹放置在与/yolov5同级目录下,如3.1节图所示。

四、训练coco128数据集

4.1训练

直接在终端中输入:
python train.py --img 640 --batch 16 --epochs 5 --data ./data/coco128.yaml --cfg ./models/yolov5s.yaml --weights ./yolov5s.pt

其中:img为图片大小,batch可以根据自己电脑内存设置大小

训练结果会在runs/train文件下显示:

YOLOV5环境搭建以及训练COCO128数据集_第4张图片

4.2小测试

注意自己的weight的存放路径

python detect.py --source ./inference/images/ --weights ./runs/train/exp3/weights/best.pt

你可能感兴趣的:(python图片处理深度学习,python,深度学习,pytorch)