机器学习之超参数优化 - 网格优化方法(网格搜索)

机器学习之超参数优化 - 网格优化方法(网格搜索)

超参数优化与枚举网格的理论极限

  • 超参数优化HPO(HyperParameter Optimization)

每一个机器学习算法都会有超参数,而超参数的设置很大程度上影响了算法实际的使用效果,因此调参是机器学习算法工程师最为基础和重要的任务。现代机器学习与深度学习算法的超参数量众多,不仅实现方法异常灵活、算法性能也受到更多的参数的复合影响,因此当人工智能浪潮来临时,可以自动选择超参数的超参数优化HPO领域也迎来了新一轮爆发。

在算法的世界中,我们渴望一切流程最终都走向完美自动化,专门研究机器学习自动化的学科被称为AutoML,而超参数自动优化是AutoML中最成熟、最深入、也是最知名的方向。理论上来说,当算力与数据足够时,HPO的性能一定是超过人类的。HPO能够降低人为工作量,并且HPO得出的结果比认为搜索的复现可能性更高,所以HPO可以极大程度提升科学研究的复现性和公平性。当代超参数优化算法主要可以分为:

基于网格的各类搜索(Grid)

基于贝叶斯优化的各类优化算法(Baysian)

基于梯度的各类优化(Gradient-based)

基于种群的各类优化(进化算法,遗传算法等)

其中,各类网格搜索方法与基于贝叶斯的优化方法是最为盛行的,贝叶斯优化方法甚至可以被称为是当代超参数优化中的SOTA模型。这些模型对于复杂集成算法的调整有极大的作用与意义。

网格搜索的理论极限与缺点

在所有超参数优化的算法当中,枚举网格搜索是最为基础和经典的方法。在搜索开始之前,我们需要人工将每个超参数的备选值一一列出,多个不同超参数的不同取值之间排列组合,最终将组成一个参数空间(parameter space)。枚举网格搜索算法会将这个参数空间当中所有的参数组合带入模型进行训练,最终选出泛化能力最强的组合作为模型的最终超参数。

对网格搜索而言,如果参数空间中的某一个点指向了损失函数真正的最小值,那枚举网格搜索时一定能够捕捉到该最小值以及对应的参数(相对的,假如参数空间中没有任意一点指向损失函数真正的最小值,那网格搜索就一定无法找到最小值对应的参数组合)。

参数空间越大、越密,参数空间中的组合刚好覆盖损失函数最小值点的可能性就会越大。这是说,极端情况下,当参数空间穷尽了所有可能的取值时,网格搜索一定能够找到损失函数的最小值所对应的最优参数组合,且该参数组合的泛化能力一定是强于人工调参的。

但是,参数空间越大,网格搜索所需的算力和时间也会越大,当参数维度上升时,网格搜索所需的计算量更是程指数级上升的。以随机森林为例:

只有1个参数n_estimators,备选范围是[50,100,150,200,250,300],需要建模6次。

增加参数max_depth,且备选范围是[2,3,4,5,6],需要建模30次。

增加参数min_sample_split,且备选范围为[2,3,4,5],需要建模120次。

同时,参数优化的目标是找出令模型泛化能力最强的组合,因此需要交叉验证来体现模型的泛化能力,假设交叉验证次数为5,则三个参数就需要建模600次。在面对超参数众多、且超参数取值可能无限的人工神经网络、融合模型、集成模型时,伴随着数据和模型的复杂度提升,网格搜索所需要的时间会急剧增加,完成一次枚举网格搜索可能需要耗费几天几夜。考虑到后续实践过程中,算法和数据都将更加复杂,而建模过程中超参数调优是模型训练的必备环节,因此,我们急需寻找到一种更加高效的超参数搜索方法。在本节课中,我们将介绍三种基于网格进行改进的超参数优化方法,并将他们的结果与网格搜索进行时间/空间/效果上的对比。

import numpy as np
import pandas as pd
import sklearn
import matplotlib as mlp
import matplotlib.pyplot as plt
import seaborn as sns
import time
import re, pip, conda

from sklearn.ensemble import RandomForestRegressor as RFR
from sklearn.model_selection import cross_validate, KFold, GridSearchCV

data = pd.read_csv(r"../datasets/House Price/train_encode.csv",index_col=0)

X = data.iloc[:,:-1]
y = data.iloc[:,-1]

#参数空间
param_grid_simple = {"criterion": ["squared_error","poisson"]
                     , 'n_estimators': [*range(20,100,5)]
                     , 'max_depth': [*range(10,25,2)]
                     , "max_features": ["log2","sqrt",16,32,64,"auto"]
                     , "min_impurity_decrease": [*np.arange(0,5,10)]
                    }
#模型,交叉验证,网格搜索
reg = RFR(random_state=1412,verbose=True,n_jobs=-1)
cv = KFold(n_splits=5,shuffle=True,random_state=1412)
search = GridSearchCV(estimator=reg
                     ,param_grid=param_grid_simple
                     ,scoring = "neg_mean_squared_error"
                     ,verbose = True
                     ,cv = cv
                     ,n_jobs=-1)
 
search.fit(X,y)
search.best_estimator_

#按最优参数重建模型,查看效果
ad_reg = RFR(n_estimators=85, max_depth=23, max_features=16, random_state=1412)
cv = KFold(n_splits=5,shuffle=True,random_state=1412)
result_post_adjusted = cross_validate(ad_reg,X,y,cv=cv,scoring="neg_mean_squared_error"
                          ,return_train_score=True
                          ,verbose=True
                          ,n_jobs=-1)
def RMSE(cvresult,key):
    return (abs(cvresult[key])**0.5).mean()

RMSE(result_post_adjusted,"train_score")
RMSE(result_post_adjusted,"test_score")
                       
HPO方法 默认参数 网格搜索
搜索空间/全域空间 - 1536/1536
运行时间(分钟) - 6.36
搜索最优(RMSE) 30571.266 29179.698
重建最优(RMSE) - 28572.070

你可能感兴趣的:(机器学习,机器学习,人工智能,算法)