- Llama3本地部署的解决方案
herosunly
llama3llama本地部署API解决方案
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了Llama3本地部署的解决方案,希望对学习大语言模型的同学们有所帮助。文
- 探索Llama Recipes:Meta Llama模型的实用示例库
郁英忆
探索LlamaRecipes:MetaLlama模型的实用示例库去发现同类优质开源项目:https://gitcode.com/在机器学习和自然语言处理的世界中,MetaLlama模型是一颗璀璨的新星,以其强大的对话理解和生成能力而受到广泛关注。现在,有了llama-recipes这个开源项目,开发者可以轻松上手并充分利用这些模型。本文将引导您了解这个项目,它的技术优势,适用场景以及鲜明特点。项目
- ML.NET速览
aixing8475
人工智能操作系统runtime
什么是ML.NET?ML.NET是由微软创建,为.NET开发者准备的开源机器学习框架。它是跨平台的,可以在macOS,Linux及Windows上运行。机器学习管道ML.NET通过管道(pipeline)方式组合机器学习过程。整个管道分为以下四个部分:LoadData加载数据TransformData转换数据ChooseAlgorithm选择算法TrainModel训练模型示例建立一个控制台项目。
- Streamlit,一个超强的 Python 应用开发库!
一行玩python
python开发语言
大家好,我是“一行”。今天,我们要来聊一个非常酷的Python库——Streamlit。如果你有过构建Web应用的经验,或者你对快速搭建交互式应用感兴趣,那么Streamlit会是一个非常棒的工具。它可以让你用极少的代码,快速创建出功能强大且美观的Web应用。无论你是数据分析师、机器学习工程师,还是Python初学者,Streamlit都能帮你轻松实现数据可视化、模型展示等功能。今天我们就从基础开
- AI 驱动的创业产品设计趋势:大模型赋能下的创新
AI天才研究院
【精选大厂面试题详解】大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
AI驱动的创业产品设计趋势:大模型赋能下的创新一、背景随着人工智能技术的飞速发展,特别是深度学习和大型语言模型(如GPT)的广泛应用,AI正在逐渐改变创业产品设计的游戏规则。大模型赋能下的创新成为许多创业公司脱颖而出的关键。本文将探讨以下几个方面的内容:AI驱动的创业产品设计趋势大模型在产品设计中的具体应用AI驱动创业产品的成功案例分析大模型赋能下的产品设计和开发挑战二、AI驱动的创业产品设计趋势
- RAG理论到实践:高级、模块化RAG在AI工程架构中的行业通用解决方案与实施策略(Advanced RAG✨)
汀、人工智能
LLM工业级落地实践人工智能AIAgentRAG知识问答智能问答
RAG理论到实践:高级、模块化RAG在AI工程架构中的行业通用解决方案与实施策略(AdvancedRAG✨)1.RAG简介词汇解释说明embedding嵌入(embedding)是指将高维数据映射为低维表示的过程。在机器学习和自然语言处理中,嵌入通常用于将离散的符号或对象表示为连续的向量空间中的点。在自然语言处理中,词嵌入(wordembedding)是一种常见的技术,它将单词映射到实数向量,以便
- 2025 年,人工智能的发展还是「算力至上」吗?
开心的AI频道
人工智能
算力仍是基础,但不再是唯一关键,从算力至上到多维发展算力:不可或缺的基石从市场数据来看,全球智能算力需求呈现爆发式增长,预计到2025年市场规模将达103.4亿美元,年复合增长率高达17.7%。这一增长的背后,显示出AI应用从“小打小闹”走向真实落地。以大模型为例,训练一个模型需要调用约3万个AI芯片,这种规模的算力需求使得算力基础设施建设成为各国竞相布局的战略重点。工信部等六部门联合发布的《算力
- Gary Marcus对2025年AI的25项预测:AGI的曙光仍未到来?
lilu8888888
人工智能agi百度前端
人工智能领域正经历着前所未有的快速发展,各种新技术层出不穷。然而,并非所有观点都对未来发展持乐观态度。著名人工智能专家GaryMarcus近期发布了他对2025年AI发展的25项预测,其中许多预测都对当前AI技术的局限性提出了警示。本文将深入探讨Marcus的预测,并结合实际案例进行分析,特别关注大型语言模型(LLM)的不足以及其对就业市场的影响。我们还会探讨一些优秀的AI写代码工具,例如Scri
- Python从0到100(六十一):机器学习实战-实现客户细分
是Dream呀
python机器学习开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 对于编程零基础,第一个语言是 Python 的人有什么建议?
cda2024
python开发语言
在当今数字化时代,编程已成为一项必备技能。无论你是想成为一名专业的软件开发人员,还是希望在数据分析、人工智能等领域有所建树,掌握一门编程语言都是至关重要的第一步。对于许多初学者来说,Python是一个理想的选择。它不仅语法简洁易懂,而且拥有强大的社区支持和丰富的库资源。那么,对于编程零基础且选择Python作为第一门语言的人,有哪些实用的建议呢?1.建立正确的学习心态1.1持之以恒学习编程并不是一
- 双目视觉之获取三维坐标(立体校正、Q矩阵与三角测量原理)
乐平要加油啊
YOLO+双目视觉计算机视觉opencv
前言双目视觉是一种模拟人类立体视觉的计算机视觉技术,它通过两个相机从不同的角度拍摄同一个场景,然后利用三角测量原理,计算出场景中物体的三维坐标信息。这种技术在机器人导航、自动驾驶、物体跟踪、三维重建等领域有广泛的应用。获取三维坐标是双目视觉的核心任务之一。通过对左右相机拍摄的图像进行特征匹配和视差计算,我们可以得到场景中每个像素点的视差值。视差值表示了同一个物体在左右图像中的位置差异,它与物体距离
- xgboost在spark集群使用指南
一颗小草333
算法mapreducespark数据挖掘
简介XGBoost是一个优化的分布式梯度增强库,具有高效、灵活和可移植性。在梯度增强框架下实现了机器学习算法。XGBoost提供了一种并行树增强(也称为GBDT、GBM),可以快速、准确地解决许多数据科学问题。相同的代码在主要的分布式环境(Hadoop、SGE、MPI)上运行,可以解决数十亿个示例的训练问题。xgb相对于gbt所做的改进:1.2.3.XGBoost可以使用R、python、java
- Python 在股票分析中的高级应用:挖掘金融数据的深度洞察
三带俩王
python金融开发语言
在当今的金融世界中,股票分析是投资者和金融从业者必备的技能。Python作为一种强大且灵活的编程语言,为股票分析提供了丰富的工具和技术。本文将深入探讨使用Python进行股票分析的高级用法,涵盖从数据获取与清洗、高级分析指标计算到机器学习和深度学习在股票分析中的应用等多个方面。一、数据获取与预处理:构建坚实的分析基础1.数据来源与获取直接从证券交易所获取数据:许多证券交易所提供了数据接口,例如,上
- 智能电动汽车 --- 人工智能(AI)入门
车载诊断技术
思考汽车行业人工智能智能电动汽车的三智和三电开发语言数据结构架构智能电动汽车人工智能(AI)入门
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师:简单,单纯,喜欢独处,独来独往,不易合同频过着接地气的生活,除了生存温饱问题之外,没有什么过多的欲望,表面看起来很高冷,内心热情,如果你身边有这样灵性的人,一定要好好珍惜他们眼中有神有光,干净,给人感觉很舒服,有超强的感知能力有形的无形的感知力很强,能感知人的内心变化喜欢独处,好静,
- AI大模型书籍推荐丨这本书必看:大语言模型 基础与前沿(附PDF)
LLM教程
人工智能大模型LLM程序员自然语言处理AI大模型编程
哈喽大家好!很久都没有更新大模型这块的书了,今天给大家说一下这本:《大语言模型:基础与前沿》,本书深入阐述了大语言模型的基本概念和算法、研究前沿以及应用,涵盖大语言模型的广泛主题,从基础到前沿,从方法到应用,涉及从方法论到应用场景方方面面的内容。作者简介熊涛,美国明尼苏达大学双城分校电子与计算机工程博士。曾在多家中美知名高科技公司担任高级管理职位和首席科学家,在人工智能的多个领域,包括大语言模型、
- 我的搬砖工具由 VS Code 变成 Cursor 了
老余捞鱼
人工智能AI编程cursor
作者:老余捞鱼原创不易,转载请标明出处及原作者。写在前面的话:本文介绍了我从VSCode转向Cursor的原因,强调了Cursor的人工智能交互流畅性以及其他一些优于VSCode的特性。VSCode是免费的,而且运行起来非常出色。我一直很喜欢VSCode,不过,它与GitHubCopilot等编码助手扩展的交互并不比使用ChatGPT好多少,而且肯定不如Claude。在寻找其他替代方案时,我偶然发
- 2024年AI发展的感知回顾
八角Z
人工智能机器学习计算机视觉大数据
2024年,人工智能(AI)的发展呈现出诸多引人注目的关键词,深刻地塑造着技术格局、经济模式以及人类社会的方方面面。混合无疑成为这一年AI创新历程中最为显著的特征之一。多模态生成技术在这一年里取得了令人瞩目的不断进步,使得AI能够巧妙地将文本、图像、音频、视频等多种模态的信息进行深度融合与再创造。例如:AI内容创作:AI可以将作者的文字描述转换为生动的图像、视频和配乐,为创作提供更多可能性,让创意
- 拉曼光谱增强技术,农药“指纹图谱“数据库?
百态老人
数据库
构建拉曼光谱增强技术与农药"指纹图谱"数据库是农药成分快速检测领域的前沿方向,其核心在于通过纳米材料增强效应和人工智能算法解析,实现对农药分子的高灵敏度、高特异性识别。以下从技术原理、数据库构建、应用场景及挑战四方面深入解析:一、拉曼光谱增强技术原理1.表面增强拉曼散射(SERS)电磁增强机制:利用金/银纳米结构(纳米颗粒、纳米棒、纳米星)的局域表面等离子体共振效应(LSPR),在激光激发下产生"
- 制造业汽车业数字化转型新方案——飞速创软低代码平台
人工智能
2023年7月20日-2023年7月21日2023汽车业数字化大会&制造业数字化大会在佛山顺德盛大开幕!深圳飞速创软科技有限公司如邀参加展会。本次大会聚焦于数字化转型新场景中企业承压,IT行业可以扮演怎样的角色。如今AGI时代来临,AGI将是第四次工业革命的核心驱动力。人工智能作为最先进生产力,在不断冲击着各个行业,一定程度上要求行业的现有业务结构重构,以实现当今复杂多变、极速发展的时代。在面对多
- SpringAI 搭建智能体(二):搭建客服系统智能体
drebander
AI编程springAIAgent
在现代人工智能应用中,智能体(Agent)是一个重要的概念,它的核心能力是自主性与灵活性。一个智能体不仅能够理解用户的需求,还能拆解任务、调用工具完成具体操作,并在复杂场景中高效运行。在本篇博客中,我们将围绕一个基于SpringAI的智能体实现,深入探讨智能体的概念、构建流程以及实际应用场景。1.什么是智能体?智能体是一种能够根据目标自主执行任务的系统。与传统的AI模型生成内容的模式不同,智能体通
- 飞速搭震撼上线 开启软件开发智能化新篇章
低代码
近日,飞速低代码开发平台迎来了一项具有里程碑意义的重大更新——“飞速搭”正式上线。飞速搭通过深度融合前沿的人工智能技术,实现了从需求文档到应用发布的无缝衔接,一键智能生成应用,为软件开发领域带来了全新的突破和变革。“飞速搭”的实现路径高效而清晰。用户只需将需求文档或需求描述输入给预训练的大模型,这一步骤极大地简化了传统软件开发中繁琐的需求分析和文档编写过程,使用户能够更专注于核心需求的表达。大模型
- 智能体(Agent)如何具备自我决策能力的机理与实现方法
由数入道
人工智能应急管理人工智能自然语言处理
一、智能体自我决策能力的机理从人工智能和控制理论的角度看,智能体能够“自我决策”的核心在于其“感知–认知–行动”的循环过程,以及在此过程中引入自主学习与自主优化的机制。经过优化与补充,智能体具备自我决策能力的机理可以分解为以下五个部分:1.自主感知与信息获取智能体通过传感器、数据库、互联网信息等多源数据采集,构建全面的环境感知能力。通过数据清洗、去噪、融合等方法,提升感知数据的可靠性,结合高维特征
- 大语言模型应用指南:OpenAI大语言模型简介
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:OpenAI大语言模型简介1.背景介绍1.1问题的由来在过去几年中,自然语言处理(NLP)领域取得了长足的进步,这主要归功于大型语言模型(LargeLanguageModels,LLMs)的出现和发展。LLMs是一种基于深度学习的人工智能模型,能够从大量文本数据中学习语言模式和语义关系,从而生成看似人类写作的自然语言输出。随着计算能力和数据可用性的不断提高,LLMs的规模也在不
- 通用免杀概论
曦梦逐影
安全
免杀:病毒木马免于被杀毒软件查杀,基于免杀的技术包含逆向工程、反汇编、系统漏洞等hack技术企业目前标配防护:EDR(终端主机防护)、IPS、IDS、HDR(流量监控)、XDR(相较于EDR更高级),早期的话,基于Server端、Agent端,以及后面更高级的Sass云端部署,早期赛门铁克比较多,目前亚信防毒墙。国内金融、护网:卡巴斯基居多。国外的话强对抗:猎鹰、S1(7x24小时人工智能)架构为
- 一、深度学习的基本介绍
关关钧
深度学习深度学习人工智能神经网络
机器学习的基本步骤:前馈运算、反向传播计算梯度、根据梯度更新参数值。一、定义及基本概念深度学习,就是一种利用深度人工神经网络来进行自动分类、预测和学习的技术。它可以从海量的数据中自动学习,找寻数据中的特征。所以说,它的本质就是自动提取特征的能力。可以说,深度学习就等于深度人工神经网络。一般认为超过三层的神经网络就可以叫做深度神经网络。深度学习属于一种特殊的人工智能技术。反向传播算法:此算法是人工神
- 【QT开发】所有控件基类QWidget类详解及实战应用
I'mAlex
QT开发教程qt开发语言
QWidget是Qt中所有用户界面对象的基类,掌握它的用法对于学习和使用Qt进行GUI开发至关重要。通过本篇文章的学习,你应该对QWidget有了全面的理解,能够在自己的项目中正确使用它。博主简介:现任阿里巴巴嵌入式技术专家,15年工作经验,深耕嵌入式+人工智能领域,精通嵌入式领域开发、技术管理、简历招聘面试。CSDN优质创作者,提供产品测评、学习辅导、简历面试辅导、毕设辅导、项目开发、C/C++
- 机器学习day3
ኈ ቼ ዽ
机器学习人工智能
自定义数据集使用框架的线性回归方法对其进行拟合importmatplotlib.pyplotaspltimporttorchimportnumpyasnp#1.散点输入#1、散点输入#定义输入数据data=[[-0.5,7.7],[1.8,98.5],[0.9,57.8],[0.4,39.2],[-1.4,-15.7],[-1.4,-37.3],[-1.8,-49.1],[1.5,75.6],[0
- Python文件操作(json、csv、tsv、excel、pickle文件序列化)
herosunly
机器学习入门之工具篇Python新手快速入门python文件操作
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了Python文件操作(json、csv、tsv、excel、pickle
- c++介绍与入门基础(详细总结)
X_Pqk
c++开发语言
操作系统以及大型系统软件开发服务器端开发游戏开发嵌入式和物联网领域数字图像处理人工智能分布式应用C++关键字命名空间实际工程应用中:命名空间的作用:命名空间需求展示命名空间定义命名空间使用C++输入&输出c++的《helloworld》输入&输出说明:输入&输出展示std命名空间的使用惯例缺省参数缺省参数概念缺省参数分类函数重载函数重载概念C++支持函数重载的原理–名字修饰(nameManglin
- A novice’s attempt at translating
LuminaryDream
英语笔记笔记
声明:英文原文来自扇贝英语app,中文翻译仅供参考Businessesarealreadybeingradicallytransformedbyartificialintelligence(AI).企业已经被人工智能(AI)彻底改变。Toolsnowexistthatofferinstantaneous,high-qualityresultsinimprovingcertainoperations
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key