#Import required packages
import cv2
#Read image 1
img1=cv2.imread("C:\\Users\\mac\\Pictures\\measure\\cat1.jpg")
#Read image 2
img2=cv2.imread("C:\\Users\\mac\\Pictures\\measure\\cat2.jpg")
#Define alpha and beta
alpha=0.30
beta=0.70
#Blend images
final_image=cv2.addWeighted(img1,alpha,img2,beta,0.0)
#show image
cv2.imshow('mix',final_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
#Import required packages
import cv2
import numpy as np
#Read images
image=cv2.imread("C:\\Users\\mac\\Pictures\\measure\\cat1.jpg")
#Create a dummy image that stores different contrast and brightness
new_image=np.zeros(image.shape,image.dtype)
#Brightness and contrast parameters
contrast=3.0
bright=2
#Change the contrast and brightness
for y in range(image.shape[0]):
for x in range(image.shape[1]):
for c in range(image.shape[2]):
new_image[y,x,c]=np.clip(contrast*image[y,x,c]+bright,0,255)
cv2.namedWindow('original', cv2.WINDOW_NORMAL)
cv2.imshow('original',image)
cv2.namedWindow('transform', cv2.WINDOW_NORMAL)
cv2.imshow('transform',new_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2模块中的cv2.putText()函数可以往图像中添加文字。
#import required packages
import cv2
#Read image
image=cv2.imread("C:\\Users\\mac\\Pictures\\measure\\cat1.jpg")
#Define font
font=cv2.FONT_HERSHEY_SIMPLEX
#Write on the image
cv2.putText(image,"I am a Cat",(230,50),font,0.8,(0,255,0),2,cv2.LINE_AA)
cv2.namedWindow('AddText', cv2.WINDOW_NORMAL)
cv2.imshow('AddText',image)
cv2.waitKey(0)
cv2.destroyAllWindows()
三种用于平滑图像的滤波器
cv2.medianBlur()函数能够实现中值模糊的效果。
cv2.GaussianBlur()函数应用于高斯滤波器。
cv2.bilateralFilter()函数
#Import required packages
import cv2
#Read images for different blurring purposes
image_Original=cv2.imread("C:\\Users\\mac\\Pictures\\measure\\cat1.jpg")
image_MedianBlur=cv2.imread("C:\\Users\\mac\\Pictures\\measure\\cat1.jpg")
image_GaussianBlur=cv2.imread("C:\\Users\\mac\\Pictures\\measure\\cat1.jpg")
image_BilateralBlur=cv2.imread("C:\\Users\\mac\\Pictures\\measure\\cat1.jpg")
#Blur images
image_MedianBlur=cv2.medianBlur(image_MedianBlur,9)
image_GaussianBlur=cv2.GaussianBlur(image_GaussianBlur,(9,9),10)
image_BilateralBlur=cv2.bilateralFilter(image_BilateralBlur,9,100,75)
#show images
cv2.namedWindow('image_MedianBlur', cv2.WINDOW_NORMAL)
cv2.imshow('image_MedianBlur',image_MedianBlur)
cv2.namedWindow('image_GaussianBlur', cv2.WINDOW_NORMAL)
cv2.imshow('image_GaussianBlur',image_GaussianBlur)
cv2.namedWindow('image_BilateralBlur', cv2.WINDOW_NORMAL)
cv2.imshow('image_BilateralBlur',image_BilateralBlur)
cv2.waitKey(0)
cv2.destroyAllWindows()
两种改变图像的操作:侵蚀(erosion)和扩张(dilation)。扩张操作导致物体边界的像素增加,侵蚀操作导致物体边界的像素减少。
cv2.getStructuringElement()函数用于定义核,作为侵蚀或扩张函数的参数。
# EROSION CODE:
#Import package
import cv2
#Read image
image=cv2.imread("C:\\Users\\mac\\Pictures\\measure\\cat1.jpg")
#Define erosion size
s1=0
s2=10
s3=10
#Define erosion type
t1=cv2.MORPH_RECT
t2=cv2.MORPH_CROSS
t3=cv2.MORPH_ELLIPSE
#Define and save the erosion template
tmp1=cv2.getStructuringElement(t1,(2*s1+1,2*s1+1),(s1,s1))
tmp2=cv2.getStructuringElement(t2,(2*s2+1,2*s2+1),(s2,s2))
tmp3=cv2.getStructuringElement(t3,(2*s3+1,2*s3+1),(s3,s3))
#Apply the erosion template to the image and save in different variables
final1=cv2.erode(image,tmp1)
final2=cv2.erode(image,tmp2)
final3=cv2.erode(image,tmp3)
#Show all the images with different erosions
cv2.namedWindow('final1', cv2.WINDOW_NORMAL)
cv2.imshow('final1',final1)
cv2.namedWindow('final2', cv2.WINDOW_NORMAL)
cv2.imshow('final2',final2)
cv2.namedWindow('final3', cv2.WINDOW_NORMAL)
cv2.imshow('final3',final3)
cv2.waitKey(0)
cv2.destroyAllWindows()
# DILATION CODE:
#Import package
import cv2
#Read image
image=cv2.imread("C:\\Users\\mac\\Pictures\\measure\\cat1.jpg")
#Define erosion size
d1=0
d2=10
d3=20
#Define erosion type
t1=cv2.MORPH_RECT
t2=cv2.MORPH_CROSS
t3=cv2.MORPH_ELLIPSE
#Define and save the erosion template
tmp1=cv2.getStructuringElement(t1,(2*d1+1,2*d1+1),(d1,d1))
tmp2=cv2.getStructuringElement(t2,(2*d2+1,2*d2+1),(d2,d2))
tmp3=cv2.getStructuringElement(t3,(2*d3+1,2*d3+1),(d3,d3))
#Apply the erosion template to the image and save in different variables
final1=cv2.dilate(image,tmp1)
final2=cv2.dilate(image,tmp2)
final3=cv2.dilate(image,tmp3)
#Show all the images with different erosions
cv2.namedWindow('final1', cv2.WINDOW_NORMAL)
cv2.imshow('final1',final1)
cv2.namedWindow('final2', cv2.WINDOW_NORMAL)
cv2.imshow('final2',final2)
cv2.namedWindow('final3', cv2.WINDOW_NORMAL)
cv2.imshow('final3',final3)
cv2.waitKey(0)
cv2.destroyAllWindows()
首先需要将图像转换成灰度格式,然后转换成二值格式——只有黑色与白色的图像。
提供一个参考值,然后将所有值大于或小于它的像素都转换成黑色或白色。
使用cv2.threshold()函数做图像阈限化。
#Import packages
import cv2
#Read image
image=cv2.imread("C:\\Users\\mac\\Pictures\\measure\\cat1.jpg")
#Define threshold types
'''
0 - Binary
1 - Binary Inverted
2 - Truncated
3 - Threshold To Zero
4 - Threshold To Zero Inverted
'''
#Apply different threshold and save in different variables
_, img1=cv2.threshold(image,50,255,0)
_, img2=cv2.threshold(image,50,255,1)
_, img3=cv2.threshold(image,50,255,2)
_, img4=cv2.threshold(image,50,255,3)
_, img5=cv2.threshold(image,50,255,4)
#Show the different threshold images
cv2.namedWindow('img1', cv2.WINDOW_NORMAL)
cv2.imshow('img1',img1)
cv2.namedWindow('img2', cv2.WINDOW_NORMAL)
cv2.imshow('img2',img2)
cv2.namedWindow('img3', cv2.WINDOW_NORMAL)
cv2.imshow('img3',img3)
cv2.namedWindow('img4', cv2.WINDOW_NORMAL)
cv2.imshow('img4',img4)
cv2.namedWindow('img5', cv2.WINDOW_NORMAL)
cv2.imshow('img5',img5)
cv2.waitKey(0)
cv2.destroyAllWindows()
在本节中,将介绍如何使用索伯导数(Sobel derivative)做边缘检测。边有两种方向:垂直方向和水平方向。。针对这种算法,我们强调只有空间频率非常高的区域才能算作边。一个区域的空间频率是指这个区域内的细节丰富程度。
在下面的代码中,我们用高斯模糊去除噪声,然后将图像转换成灰度图。我们使用cv2.cvtColor()函数将图像转换成灰度图。skimage模块里的函数也能达到同样的效果。最后,我们将灰度图输出到cv2.Sobel()函数。