研究:电荷在周围引起的效应
基本概念、基本方法,不研究具体应用
不仅与 t t t有关,还与空间坐标有关
E ⃗ ( x , y , z , t ) \vec{E}\left ( x,y,z,t \right ) E(x,y,z,t)
对于某一个关心的物理量,在某个空间 V V V里面,每点都有一个确定(分布确定、随时间变化规律确定)的值与之对应,该空间 V V V称为场
多种场会同时存在一个空间
{ 数量场 / 标量场 U ( x , y , z , t ) 向量场 / 矢量场 A ⃗ ( x , y , z , t ) \begin{cases} 数量场/标量场 \quad U\left(x,y,z,t\right) \\ 向量场/矢量场 \quad \vec{A}\left(x,y,z,t\right) \end{cases} {数量场/标量场U(x,y,z,t)向量场/矢量场A(x,y,z,t)
或
{ 稳定场 / 恒定场 时变场 \begin{cases} 稳定场/恒定场 \\ 时变场 \end{cases} {稳定场/恒定场时变场
u = c 1 u=c_{1} u=c1
u = c 2 u=c_{2} u=c2
. . . ... ...
数量场中等值面有 ∞ \infty ∞个
等值面不可能相交
工程中,绘制的是等差等值面
等值面方程: u ( x , y , z , t ) = c u\left(x,y,z,t\right)=c u(x,y,z,t)=c
A ⃗ ( x , y , z ) = A x ( x , y , z ) e x ⃗ + A y ( x , y , z ) e y ⃗ + A z ( x , y , z ) e z ⃗ \vec{A}\left(x,y,z\right)=A_{x}\left(x,y,z\right)\vec{e_{x}}+A_{y}\left(x,y,z\right)\vec{e_{y}}+A_{z}\left(x,y,z\right)\vec{e_{z}} A(x,y,z)=Ax(x,y,z)ex+Ay(x,y,z)ey+Az(x,y,z)ez
矢量线上任一点的切线方向即为该点处 A ⃗ \vec{A} A的方向
矢量线不可能相交
矢量线方程: d x A x ( x , y , z ) = d y A y ( x , y , z ) = d z A z ( x , y , z ) \frac{\mathrm{d} x}{A_{x}\left(x,y,z\right)}= \frac{\mathrm{d} y}{A_{y}\left(x,y,z\right)}=\frac{\mathrm{d} z}{A_{z}\left(x,y,z\right)} Ax(x,y,z)dx=Ay(x,y,z)dy=Az(x,y,z)dz
无穷多个解,每个解代表一簇矢量线
( ∂ u ∂ l ) M = lim M P ⌢ → 0 u ( P ) − u ( M ) M P ⌢ = ∂ u ∂ x cos α + ∂ u ∂ y cos β + ∂ u ∂ z cos γ \begin{align*} \left(\frac{\partial u}{\partial l}\right) _{M} &= \lim_{\stackrel\frown{MP} \to 0} \frac{u\left(P\right)-u\left(M\right)}{\stackrel\frown{MP} } \\ &=\frac{\partial u}{\partial x} \cos \alpha +\frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma \end{align*} (∂l∂u)M=MP⌢→0limMP⌢u(P)−u(M)=∂x∂ucosα+∂y∂ucosβ+∂z∂ucosγ
∂ u ∂ l = G ⃗ ⋅ l 0 ⃗ G ⃗ = ∂ u ∂ x e x ⃗ + ∂ u ∂ y e y ⃗ + ∂ u ∂ z e z ⃗ l 0 ⃗ = cos α e x ⃗ + cos β e y ⃗ + cos γ e z ⃗ \frac{\partial u}{\partial l} =\vec{G}\cdot \vec{l_{0}}\\ \vec{G}= \frac{\partial u}{\partial x} \vec{e_{x}} +\frac{\partial u}{\partial y} \vec{e_{y}}+\frac{\partial u}{\partial z} \vec{e_{z}}\\ \vec{l_{0}} =\cos\alpha\vec{e_{x}}+ \cos\beta\vec{e_{y}}+\cos\gamma\vec{e_{z}} ∂l∂u=G⋅l0G=∂x∂uex+∂y∂uey+∂z∂uezl0=cosαex+cosβey+cosγez
记作 g r a d u = G ⃗ = ∂ u ∂ x e x ⃗ + ∂ u ∂ y e y ⃗ + ∂ u ∂ z e z ⃗ grad\; u=\vec{G}=\frac{\partial u}{\partial x} \vec{e_{x}} +\frac{\partial u}{\partial y} \vec{e_{y}}+\frac{\partial u}{\partial z} \vec{e_{z}} gradu=G=∂x∂uex+∂y∂uey+∂z∂uez
哈密尔顿算子(直角坐标中展开)
∇ = ∂ ∂ x e x ⃗ + ∂ ∂ y e y ⃗ + ∂ ∂ z e z ⃗ \nabla=\frac{\partial}{\partial x} \vec{e_{x}} +\frac{\partial}{\partial y} \vec{e_{y}}+\frac{\partial}{\partial z} \vec{e_{z}} ∇=∂x∂ex+∂y∂ey+∂z∂ez
两个性质:矢量性、微分性
哈密顿算子表示梯度: g r a d u = ∇ u grad\; u=\nabla u gradu=∇u
一般曲面: Φ = ∫ s A ⃗ ⋅ S ⃗ \Phi =\int_{s}^{} \vec{A}\cdot \vec{S} Φ=∫sA⋅S
闭合曲面: Φ = ∮ s A ⃗ ⋅ S ⃗ \Phi =\oint_{s}^{} \vec{A}\cdot \vec{S} Φ=∮sA⋅S
d i v A ⃗ = lim Δ V → 0 ∮ s A ⃗ ⋅ d S ⃗ Δ V = ∂ ∂ x A x + ∂ ∂ y A y + ∂ ∂ z A z A ⃗ ( x , y , z ) = A x e x ⃗ + A y e y ⃗ + A z e z ⃗ d i v A ⃗ = ∇ ⋅ A ⃗ div \; \vec{A}=\lim_{\Delta V \to 0} \frac{\oint_{s}^{} \vec{A}\cdot \vec{dS}}{\Delta V} = \frac{\partial}{\partial x}{A_{x}} +\frac{\partial}{\partial y}{A_{y}}+\frac{\partial}{\partial z}{A_{z}}\\ \vec{A}\left(x,y,z\right)=A_{x}\vec{e_{x}}+A_{y}\vec{e_{y}}+A_{z}\vec{e_{z}}\\ div \; \vec{A}=\nabla\cdot\vec{A} divA=ΔV→0limΔV∮sA⋅dS=∂x∂Ax+∂y∂Ay+∂z∂AzA(x,y,z)=Axex+Ayey+AzezdivA=∇⋅A
Q = ∮ l A ⃗ ⋅ d l ⃗ Q=\oint_{l}^{} \vec{A}\cdot\vec{\mathrm{d}l} Q=∮lA⋅dl
通过环路积分是否为0可以初步判断是否有漩涡
环量密度 q = lim Δ S → 0 ∮ l A ⃗ ⋅ d l ⃗ Δ S = ( ∂ A z ∂ y − ∂ A y ∂ z ) cos α + ( ∂ A x ∂ z − ∂ A z ∂ x ) cos β + ( ∂ A y ∂ x − ∂ A x ∂ y ) cos γ \begin{align*} 环量密度q&=\lim_{\Delta S \to 0} \frac{\oint_{l}^{} \vec{A}\cdot \vec{\mathrm{d}l}}{\Delta S}\\ &=\left ( \frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right ) \cos \alpha +\left ( \frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right ) \cos \beta+\left ( \frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right ) \cos \gamma \end{align*} 环量密度q=ΔS→0limΔS∮lA⋅dl=(∂y∂Az−∂z∂Ay)cosα+(∂z∂Ax−∂x∂Az)cosβ+(∂x∂Ay−∂y∂Ax)cosγ
n 0 ⃗ = cos α e x ⃗ + cos β e y ⃗ + cos γ e z ⃗ \vec{n_{0}}=\cos\alpha\vec{e_{x}}+ \cos\beta\vec{e_{y}}+\cos\gamma\vec{e_{z}} n0=cosαex+cosβey+cosγez
取:
V ⃗ = ( ∂ A z ∂ y − ∂ A y ∂ z ) e x ⃗ + ( ∂ A x ∂ z − ∂ A z ∂ x ) e y ⃗ + ( ∂ A y ∂ x − ∂ A x ∂ y ) e z ⃗ q = V ⃗ ⋅ n 0 ⃗ \begin{align*} \vec{V} &= \left ( \frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right )\vec{e_{x}} +\left ( \frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right )\vec{e_{y}}+\left ( \frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right )\vec{e_{z}}\\ q &= \vec{V}\cdot\vec{n_{0}} \end{align*} Vq=(∂y∂Az−∂z∂Ay)ex+(∂z∂Ax−∂x∂Az)ey+(∂x∂Ay−∂y∂Ax)ez=V⋅n0
V ⃗ \vec{V} V的方向则是使 q q q的值最大的方向,即“漩涡”的轴的方向
r o t A ⃗ = V ⃗ = ( ∂ A z ∂ y − ∂ A y ∂ z ) e x ⃗ + ( ∂ A x ∂ z − ∂ A z ∂ x ) e y ⃗ + ( ∂ A y ∂ x − ∂ A x ∂ y ) e z ⃗ r o t A ⃗ = ∇ × A ⃗ = ∣ e x ⃗ e y ⃗ e z ⃗ ∂ ∂ x ∂ ∂ y ∂ ∂ z A x A y A z ∣ rot\; \vec{A}=\vec{V} = \left ( \frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right )\vec{e_{x}} +\left ( \frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right )\vec{e_{y}}+\left ( \frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right )\vec{e_{z}}\\ rot\; \vec{A}=\nabla \times \vec{A}=\begin{vmatrix} \vec{e_{x}} & \vec{e_{y}} & \vec{e_{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ A_{x} & A_{y} & A_{z} \end{vmatrix} rotA=V=(∂y∂Az−∂z∂Ay)ex+(∂z∂Ax−∂x∂Az)ey+(∂x∂Ay−∂y∂Ax)ezrotA=∇×A= ex∂x∂Axey∂y∂Ayez∂z∂Az
把微分符号 d \mathrm{d} d替换为哈密顿算子 ∇ \nabla ∇之后仍成立
∇ ⋅ ( A ⃗ × B ⃗ ) = B ⃗ ⋅ ∇ × A ⃗ − A ⃗ ⋅ ∇ × B ⃗ ∇ × ( u A ⃗ ) = u ∇ × A ⃗ + ∇ u × A ⃗ ∇ × ( ∇ u ) ≡ 0 ∇ ⋅ ( ∇ × A ⃗ ) ≡ 0 \nabla \cdot \left(\vec{A}\times\vec{B}\right)=\vec{B}\cdot\nabla\times\vec{A}-\vec{A}\cdot\nabla\times\vec{B}\\ \nabla\times\left(u\vec{A}\right)=u\nabla\times\vec{A}+\nabla u\times\vec{A}\\ \nabla\times\left(\nabla u\right)\equiv 0\\ \nabla\cdot\left(\nabla\times\vec{A}\right)\equiv 0 ∇⋅(A×B)=B⋅∇×A−A⋅∇×B∇×(uA)=u∇×A+∇u×A∇×(∇u)≡0∇⋅(∇×A)≡0
拉普拉斯算子:
R ⃗ = r ⃗ − r ′ ⃗ \vec{R}=\vec{r}-\vec{r\prime} R=r−r′,即场点-源点
∇ ( 1 R ) = − 1 R 2 e l ⃗ 场点动 ∇ ′ ( 1 R ) = 1 R 2 e l ⃗ 源点动 ∇ 2 ( 1 R ) = 0 ( r ⃗ ≠ r ′ ⃗ ) 所以 ≠ 0 时即为源点 \nabla\left(\frac{1}{R}\right)=-\frac{1}{R^{2}}\vec{e_{l}} \quad 场点动\\ \nabla\prime\left(\frac{1}{R}\right)=\frac{1}{R^{2}}\vec{e_{l}} \quad 源点动\\ \nabla^{2}\left(\frac{1}{R}\right)=0 \quad \left(\vec{r} \ne \vec{r\prime}\right) \quad 所以\ne0时即为源点 ∇(R1)=−R21el场点动∇′(R1)=R21el源点动∇2(R1)=0(r=r′)所以=0时即为源点
空间的一个矢量场由其散度、旋度和定解条件唯一确定