【transformer】【pytorch】TransFG代码【modeling.py】

1 modeling.py

1)导入包
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import torchsnooper as ts

import copy
import logging
import math

from os.path import join as pjoin

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

from torch.nn import CrossEntropyLoss, Dropout, Softmax, Linear, Conv2d, LayerNorm
from torch.nn.modules.utils import _pair
from scipy import ndimage

import models.configs as configs

logger = logging.getLogger(__name__)

ATTENTION_Q = "MultiHeadDotProductAttention_1/query"
ATTENTION_K = "MultiHeadDotProductAttention_1/key"
ATTENTION_V = "MultiHeadDotProductAttention_1/value"
ATTENTION_OUT = "MultiHeadDotProductAttention_1/out"
FC_0 = "MlpBlock_3/Dense_0"
FC_1 = "MlpBlock_3/Dense_1"
ATTENTION_NORM = "LayerNorm_0"
MLP_NORM = "LayerNorm_2"
2)if _ name _=="_main _"
为了能够直接观察本节代码,因此在此代码后,进行了调用,创建了输入张量以及输出。
if __name__=="__main__":
    config = CONFIGS['ViT-B_16']
    config.split = 'overlap'
    net = VisionTransformer(config,num_classes=200)
    x = torch.rand((2,3,224,224)).type((torch.float32))
    y = net(x)
3)Class Attention

此处有多个注意力抽头,有的文章强调,多个注意力抽头可以将嵌入向量映射到不同的空间,也就是可以关注不同的信息。害,神奇,不知道他能关注姿态么?

class Attention(nn.Module):
    def __init__(self, config):
        super(Attention, self).__init__()
        self.num_attention_heads = config.transformer["num_heads"]
        self.attention_head_size = int(config.hidden_size / self.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = Linear(config.hidden_size, self.all_head_size)
        self.key = Linear(config.hidden_size, self.all_head_size)
        self.value = Linear(config.hidden_size, self.all_head_size)

        self.out = Linear(config.hidden_size, config.hidden_size)
        self.attn_dropout = Dropout(config.transformer["attention_dropout_rate"])
        self.proj_dropout = Dropout(config.transformer["attention_dropout_rate"])

        self.softmax = Softmax(dim=-1)

    def transpose_for_scores(self, x):
        with ts.snoop():
            new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)#(2,325,12,64)
            x = x.view(*new_x_shape)
            return x.permute(0, 2, 1, 3)#(2,12,325,64)

    def forward(self, hidden_states):
        with ts.snoop():#torchsnooper.snoop(),打印每一行运行结果,有利于调试
        
        	#hidden_states(2, 325, 768),325=324+1,是嵌入向量。
        	#self.query\key\value是各自的映射,输出为(2,325,768).。此处的768=12*64是12个注意力抽头,每个是64维向量
            mixed_query_layer = self.query(hidden_states)
            mixed_key_layer = self.key(hidden_states)
            mixed_value_layer = self.value(hidden_states)
			
			#(2,12,325,64)12表示12个注意力,325是嵌入向量的个数。计算时,计算每个注意力抽头中的不同嵌入向量间的关系,
			#最后将12个注意力的输出结果进行合并,因此此处通过transpose_for_scores函数进行reshape
            query_layer = self.transpose_for_scores(mixed_query_layer)#(2,12,325,64)
            key_layer = self.transpose_for_scores(mixed_key_layer)#(2,12,325,64)
            value_layer = self.transpose_for_scores(mixed_value_layer)#(2,12,325,64)

			#计算相似度q*kT,输出后两维度的每一行表示所有嵌入向量与当前向量的相似度
            attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))#(2,12,325,325)
            attention_scores = attention_scores / math.sqrt(self.attention_head_size)  #q*kT/根号d
            attention_probs = self.softmax(attention_scores)
            weights = attention_probs#(2,12,325,325)
            attention_probs = self.attn_dropout(attention_probs)
	
			#给各个向量分配权重,q*kT*v
            context_layer = torch.matmul(attention_probs, value_layer)#(2,12,325,64)
            #合并所有的注意力抽头
            context_layer = context_layer.permute(0, 2, 1, 3).contiguous() #(2,325,12,64)
            new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
            context_layer = context_layer.view(*new_context_layer_shape)#(2,325,768)
            attention_output = self.out(context_layer) #(2,325,768)
            attention_output = self.proj_dropout(attention_output)
            return attention_output, weights 
            #输出的是各个向量计算多个注意力抽头,分配权重,合并抽头,并映射为嵌入维度的向量、12个heads对应的vectors间的相似度关系

创建以及调用代码:

Block:
self.attn = Attention(config)
------
x, weights = self.attn(x)
4)Class MLP
#实现的是注意力输出结果,进行映射
class Mlp(nn.Module):
    def __init__(self, config):
        super(Mlp, self).__init__()
        self.fc1 = Linear(config.hidden_size, config.transformer["mlp_dim"])
        self.fc2 = Linear(config.transformer["mlp_dim"], config.hidden_size)
        self.act_fn = ACT2FN["gelu"]
        self.dropout = Dropout(config.transformer["dropout_rate"])

        self._init_weights()

    def _init_weights(self):
        nn.init.xavier_uniform_(self.fc1.weight)
        nn.init.xavier_uniform_(self.fc2.weight)
        nn.init.normal_(self.fc1.bias, std=1e-6)
        nn.init.normal_(self.fc2.bias, std=1e-6)

    def forward(self, x):
        with ts.snoop():
            x = self.fc1(x)
            x = self.act_fn(x)
            x = self.dropout(x)
            x = self.fc2(x)
            x = self.dropout(x)
            return x
5)Class Embeddings
class Embeddings(nn.Module):
    """Construct the embeddings from patch, position embeddings.
    """
    def __init__(self, config, img_size, in_channels=3):
        super(Embeddings, self).__init__()
        self.hybrid = None #混合模型。可能是resnet+ViT?
        img_size = _pair(img_size)

        patch_size = _pair(config.patches["size"])
        if config.split == 'non-overlap':
            n_patches = (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1])#不重叠的获取,此时分割线处的内容信息就不能完整获得
            self.patch_embeddings = Conv2d(in_channels=in_channels,
                                       out_channels=config.hidden_size,
                                       kernel_size=patch_size,
                                       stride=patch_size)# kernel和stride都是patch_size大小
        elif config.split == 'overlap':
            n_patches = ((img_size[0] - patch_size[0]) // config.slide_step + 1) * ((img_size[1] - patch_size[1]) // config.slide_step + 1) #重叠获取。巻积核不变,stride变,此时输出的patch数应该会边多
            self.patch_embeddings = Conv2d(in_channels=in_channels,
                                        out_channels=config.hidden_size,
                                        kernel_size=patch_size,
                                        stride=(config.slide_step, config.slide_step))
        self.position_embeddings = nn.Parameter(torch.zeros(1, n_patches+1, config.hidden_size))#位置信息
        self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))#每次多出来的那一个嵌入向量

        self.dropout = Dropout(config.transformer["dropout_rate"])

    def forward(self, x):
        with ts.snoop():
            B = x.shape[0]
            cls_tokens = self.cls_token.expand(B, -1, -1)#(2,1,768)

            if self.hybrid:
                x = self.hybrid_model(x)#(2, 768, 18, 18)
            x = self.patch_embeddings(x)
            x = x.flatten(2)#(2,768,324)
            x = x.transpose(-1, -2)#(2,324,768)
            x = torch.cat((cls_tokens, x), dim=1)#(2,325,768)

            embeddings = x + self.position_embeddings
            embeddings = self.dropout(embeddings)
            return embeddings#(2,325,768)
6)Block
class Block(nn.Module):
    def __init__(self, config):
        super(Block, self).__init__()
        self.hidden_size = config.hidden_size
        self.attention_norm = LayerNorm(config.hidden_size, eps=1e-6)
        self.ffn_norm = LayerNorm(config.hidden_size, eps=1e-6)
        self.ffn = Mlp(config)
        self.attn = Attention(config)

    def forward(self, x):
        with ts.snoop():
            h = x
            x = self.attention_norm(x)
            x, weights = self.attn(x)
            x = x + h#LN 、att、residual

            h = x
            x = self.ffn_norm(x)
            x = self.ffn(x)
            x = x + h #LN、mlp、residual
            return x, weights #weights是每个块内注意力的参数,也就是12个注意力抽头的嵌入向量间的余弦相似度矩阵

    def load_from(self, weights, n_block):#为看
        ROOT = f"Transformer/encoderblock_{n_block}"
        with torch.no_grad():
            query_weight = np2th(weights[pjoin(ROOT, ATTENTION_Q, "kernel")]).view(self.hidden_size, self.hidden_size).t()
            key_weight = np2th(weights[pjoin(ROOT, ATTENTION_K, "kernel")]).view(self.hidden_size, self.hidden_size).t()
            value_weight = np2th(weights[pjoin(ROOT, ATTENTION_V, "kernel")]).view(self.hidden_size, self.hidden_size).t()
            out_weight = np2th(weights[pjoin(ROOT, ATTENTION_OUT, "kernel")]).view(self.hidden_size, self.hidden_size).t()

            query_bias = np2th(weights[pjoin(ROOT, ATTENTION_Q, "bias")]).view(-1)
            key_bias = np2th(weights[pjoin(ROOT, ATTENTION_K, "bias")]).view(-1)
            value_bias = np2th(weights[pjoin(ROOT, ATTENTION_V, "bias")]).view(-1)
            out_bias = np2th(weights[pjoin(ROOT, ATTENTION_OUT, "bias")]).view(-1)

            self.attn.query.weight.copy_(query_weight)
            self.attn.key.weight.copy_(key_weight)
            self.attn.value.weight.copy_(value_weight)
            self.attn.out.weight.copy_(out_weight)
            self.attn.query.bias.copy_(query_bias)
            self.attn.key.bias.copy_(key_bias)
            self.attn.value.bias.copy_(value_bias)
            self.attn.out.bias.copy_(out_bias)

            mlp_weight_0 = np2th(weights[pjoin(ROOT, FC_0, "kernel")]).t()
            mlp_weight_1 = np2th(weights[pjoin(ROOT, FC_1, "kernel")]).t()
            mlp_bias_0 = np2th(weights[pjoin(ROOT, FC_0, "bias")]).t()
            mlp_bias_1 = np2th(weights[pjoin(ROOT, FC_1, "bias")]).t()

            self.ffn.fc1.weight.copy_(mlp_weight_0)
            self.ffn.fc2.weight.copy_(mlp_weight_1)
            self.ffn.fc1.bias.copy_(mlp_bias_0)
            self.ffn.fc2.bias.copy_(mlp_bias_1)

            self.attention_norm.weight.copy_(np2th(weights[pjoin(ROOT, ATTENTION_NORM, "scale")]))
            self.attention_norm.bias.copy_(np2th(weights[pjoin(ROOT, ATTENTION_NORM, "bias")]))
            self.ffn_norm.weight.copy_(np2th(weights[pjoin(ROOT, MLP_NORM, "scale")]))
            self.ffn_norm.bias.copy_(np2th(weights[pjoin(ROOT, MLP_NORM, "bias")]))
7)PartAttention
class Part_Attention(nn.Module):
    def __init__(self):
        super(Part_Attention, self).__init__()

    def forward(self, x):
        with ts.snoop():
            length = len(x)
            last_map = x[0]#(2,12,325,325)第一个权重矩阵
            for i in range(1, length): 
                last_map = torch.matmul(x[i], last_map)
            last_map = last_map[:,:,0,1:]#(2,12,324)每个注意力抽头,只要cls_tokens与其他抽头之间的相似度

            _, max_inx = last_map.max(2)#获取12个抽头中与cls_tokens最为相似的
            return _, max_inx
8)Encode
class Encoder(nn.Module):
    def __init__(self, config):
        super(Encoder, self).__init__()
        self.layer = nn.ModuleList()
        for _ in range(config.transformer["num_layers"] - 1):
            layer = Block(config)
            self.layer.append(copy.deepcopy(layer))
        self.part_select = Part_Attention()
        self.part_layer = Block(config)
        self.part_norm = LayerNorm(config.hidden_size, eps=1e-6)

    def forward(self, hidden_states):#(2,325,768)
        with ts.snoop():
            attn_weights = []
            for layer in self.layer:#前向计算,并记录weights
                hidden_states, weights = layer(hidden_states)
                attn_weights.append(weights)
            part_num, part_inx = self.part_select(attn_weights)
            #part_num(2,12) part_inx(2,12),也就是12个注意力头每一个中的最大值
            #理解:因为每一个注意力头代表的是不同空间,代表的是不同的信息,在每个空间中与cls_tokens余弦相似度最大的输出。
            
            part_inx = part_inx + 1#由于hidden_states[0]是cls_tokens,获取part_inx时取的是324个相似度中最大
            parts = []
            B, num = part_inx.shape
            for i in range(B):
                parts.append(hidden_states[i, part_inx[i,:]])#获取这些更好表达的注意力向量
            parts = torch.stack(parts).squeeze(1)#(2,12,768)
            concat = torch.cat((hidden_states[:,0].unsqueeze(1), parts), dim=1)#(2,13,768)和cls_token结合
            part_states, part_weights = self.part_layer(concat)#(2,13,768) #(2,12,13,13)送入最后一层,但是怎么体现获取差异性信息确实没有怎么看明白,哈哈,知道得兄弟麻烦告知一下
            part_encoded = self.part_norm(part_states)

            return part_encoded
9)Transformer
class Transformer(nn.Module):
    def __init__(self, config, img_size):
        super(Transformer, self).__init__()
        self.embeddings = Embeddings(config, img_size=img_size)
        self.encoder = Encoder(config)

    def forward(self, input_ids):
        with ts.snoop():
            embedding_output = self.embeddings(input_ids)
            part_encoded = self.encoder(embedding_output)
            return part_encoded
10)VisionTransformer
class VisionTransformer(nn.Module):
    def __init__(self, config, img_size=224, num_classes=21843, smoothing_value=0, zero_head=False):
        super(VisionTransformer, self).__init__()
        self.num_classes = num_classes
        self.smoothing_value = smoothing_value
        self.zero_head = zero_head
        self.classifier = config.classifier
        self.transformer = Transformer(config, img_size)
        self.part_head = Linear(config.hidden_size, num_classes)

    def forward(self, x, labels=None):
        with ts.snoop():
            part_tokens = self.transformer(x)
            part_logits = self.part_head(part_tokens[:, 0])#class_tokens作为输出

            if labels is not None:#train
                if self.smoothing_value == 0:
                    loss_fct = CrossEntropyLoss()
                else:
                    loss_fct = LabelSmoothing(self.smoothing_value)#标签平滑,并返回
                part_loss = loss_fct(part_logits.view(-1, self.num_classes), labels.view(-1))
                contrast_loss = con_loss(part_tokens[:, 0], labels.view(-1))
                loss = part_loss + contrast_loss
                return loss, part_logits
            else:               #valid
                return part_logits

    def load_from(self, weights):
        with torch.no_grad():
            self.transformer.embeddings.patch_embeddings.weight.copy_(np2th(weights["embedding/kernel"], conv=True))
            self.transformer.embeddings.patch_embeddings.bias.copy_(np2th(weights["embedding/bias"]))
            self.transformer.embeddings.cls_token.copy_(np2th(weights["cls"]))

            posemb = np2th(weights["Transformer/posembed_input/pos_embedding"])
            posemb_new = self.transformer.embeddings.position_embeddings
            if posemb.size() == posemb_new.size():
                self.transformer.embeddings.position_embeddings.copy_(posemb)
            else:
                logger.info("load_pretrained: resized variant: %s to %s" % (posemb.size(), posemb_new.size()))
                ntok_new = posemb_new.size(1)

                if self.classifier == "token":
                    posemb_tok, posemb_grid = posemb[:, :1], posemb[0, 1:]
                    ntok_new -= 1
                else:
                    posemb_tok, posemb_grid = posemb[:, :0], posemb[0]

                gs_old = int(np.sqrt(len(posemb_grid)))
                gs_new = int(np.sqrt(ntok_new))
                print('load_pretrained: grid-size from %s to %s' % (gs_old, gs_new))
                posemb_grid = posemb_grid.reshape(gs_old, gs_old, -1)

                zoom = (gs_new / gs_old, gs_new / gs_old, 1)
                posemb_grid = ndimage.zoom(posemb_grid, zoom, order=1)
                posemb_grid = posemb_grid.reshape(1, gs_new * gs_new, -1)
                posemb = np.concatenate([posemb_tok, posemb_grid], axis=1)
                self.transformer.embeddings.position_embeddings.copy_(np2th(posemb))

            for bname, block in self.transformer.encoder.named_children():
                if bname.startswith('part') == False:
                    for uname, unit in block.named_children():
                        unit.load_from(weights, n_block=uname)

            if self.transformer.embeddings.hybrid:
                self.transformer.embeddings.hybrid_model.root.conv.weight.copy_(np2th(weights["conv_root/kernel"], conv=True))
                gn_weight = np2th(weights["gn_root/scale"]).view(-1)
                gn_bias = np2th(weights["gn_root/bias"]).view(-1)
                self.transformer.embeddings.hybrid_model.root.gn.weight.copy_(gn_weight)
                self.transformer.embeddings.hybrid_model.root.gn.bias.copy_(gn_bias)

                for bname, block in self.transformer.embeddings.hybrid_model.body.named_children():
                    for uname, unit in block.named_children():
                        unit.load_from(weights, n_block=bname, n_unit=uname) 
11)other
def con_loss(features, labels):
    B, _ = features.shape
    features = F.normalize(features)
    cos_matrix = features.mm(features.t())
    pos_label_matrix = torch.stack([labels == labels[i] for i in range(B)]).float()
    neg_label_matrix = 1 - pos_label_matrix
    pos_cos_matrix = 1 - cos_matrix
    neg_cos_matrix = cos_matrix - 0.4
    neg_cos_matrix[neg_cos_matrix < 0] = 0
    loss = (pos_cos_matrix * pos_label_matrix).sum() + (neg_cos_matrix * neg_label_matrix).sum()
    loss /= B
    return loss

CONFIGS = {
    'ViT-B_16': configs.get_b16_config(),
    'ViT-B_32': configs.get_b32_config(),
    'ViT-L_16': configs.get_l16_config(),
    'ViT-L_32': configs.get_l32_config(),
    'ViT-H_14': configs.get_h14_config(),
    'testing': configs.get_testing(),
}

这篇论文,采用VℹT结构,重点介绍了获取差异性特征以及contrastive loss,后者不必再提。至于获取差异性特征不是很明白。将之前所有的q*kT矩阵相乘,最后挑出cls_token相似度的那一行,每个注意力头中都获取最大的,挑出对应的特征向量,和cls_token整合后送入最后一层。
首先,不懂得为啥子要乘,乘了有什么作用,仅仅因为i这样能涉及到所有的权重?
其次,为什么要挑出与cls_token相似度最大的对应的嵌入向量与cls_token整合,送入最后一层?

你可能感兴趣的:(transformer_CV)