通过Dlib和opencv实现人脸识别和活体检测

目录

一、准备工作

1.1 需要的库

1.2准备需要的文件和图片

1.3 测试程序

二、人脸识别开发

2.1 录入自己的人脸信息

2.2 提取录入的人脸特征

2.3 实时捕获人脸并进行识别

三、活体检测

3.1 眨眼检测

3.2 张嘴检测

3.3 摇头检测


下面这些是我突发奇想想做来玩玩,就在github上下载了人脸识别的代码(网址下面有附上),用了之后突然想试试照片的识别效果,发现照片也会被识别成我,就查阅了相关资料,一般都是通过活体检测(比如眨眼、转头之类的),想通过算法实现实时视频检测,区分真人和照片。

一、准备工作

开发环境:windows10+pycharm2022.1.3+python+3.9

1.1 需要的库

opencv-python==4.5.5.64

numpy==1.23.3

dlib==19.24.0

pandas=1.5.0

枕头=9.2.0

dlib库安装方法:

进入虚拟环境后输入:

anaconda search -t conda dlib

conda install -c https://conda.anaconda.org/conda-forge dlib

1.2准备需要的文件和图片

进入网址:http://dlib.net/files/

下载文件:shape_predictor_68_face_landmarks.dat.bz2,解压后存在data文件夹,该模型可以识别人脸68个关键点。网址中还含有5关键点模型文件。

准备人脸照片,存于img文件夹。

1.3 测试程序

# -*- coding = utf-8 -*-
# @Time : 2022/9/20 9:11
# @Author : 李昊芸
# @file : dlib_t.py
# @Software : PyCharm

import cv2
import dlib

path = "img/lhy_1.jpeg"
img = cv2.imread(path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#人脸分类器
detector = dlib.get_frontal_face_detector()
# 获取人脸检测器
predictor = dlib.shape_predictor(
    ".\\data\\shape_predictor_68_face_landmarks.dat"
)

dets = detector(gray, 1)
for face in dets:
    shape = predictor(img, face)  # 寻找人脸的68个标定点
    # 遍历所有点,打印出其坐标,并圈出来
    for pt in shape.parts():
        pt_pos = (pt.x, pt.y)
        cv2.circle(img, pt_pos, 2, (0, 255, 0), 1)
    cv2.imshow("image", img)

cv2.waitKey(0)
cv2.destroyAllWindows()

68关键点分类器识别结果:

通过Dlib和opencv实现人脸识别和活体检测_第1张图片

多人识别效果:

通过Dlib和opencv实现人脸识别和活体检测_第2张图片

二、人脸识别开发

 原github地址:https://github.com/coneypo/Dlib_face_recognition_from_camera

2.1 录入自己的人脸信息

get_faces_from_camera.py
# Copyright (C) 2018-2021 coneypo
# SPDX-License-Identifier: MIT

# Author:   coneypo
# Blog:     http://www.cnblogs.com/AdaminXie
# GitHub:   https://github.com/coneypo/Dlib_face_recognition_from_camera
# Mail:     [email protected]

# 进行人脸录入 / Face register

import dlib
import numpy as np
import cv2
import os
import shutil
import time
import logging

# Dlib 正向人脸检测器 / Use frontal face detector of Dlib
detector = dlib.get_frontal_face_detector()


class Face_Register:
    def __init__(self):
        self.path_photos_from_camera = "data/data_faces_from_camera/"
        self.font = cv2.FONT_ITALIC

        self.existing_faces_cnt = 0         # 已录入的人脸计数器 / cnt for counting saved faces
        self.ss_cnt = 0                     # 录入 personX 人脸时图片计数器 / cnt for screen shots
        self.current_frame_faces_cnt = 0    # 录入人脸计数器 / cnt for counting faces in current frame

        self.save_flag = 1                  # 之后用来控制是否保存图像的 flag / The flag to control if save
        self.press_n_flag = 0               # 之后用来检查是否先按 'n' 再按 's' / The flag to check if press 'n' before 's'

        # FPS
        self.frame_time = 0
        self.frame_start_time = 0
        self.fps = 0
        self.fps_show = 0
        self.start_time = time.time()

    # 新建保存人脸图像文件和数据 CSV 文件夹 / Mkdir for saving photos and csv
    def pre_work_mkdir(self):
        # 新建文件夹 / Create folders to save face images and csv
        if os.path.isdir(self.path_photos_from_camera):
            pass
        else:
            os.mkdir(self.path_photos_from_camera)

    # 删除之前存的人脸数据文件夹 / Delete old face folders
    def pre_work_del_old_face_folders(self):
        # 删除之前存的人脸数据文件夹, 删除 "/data_faces_from_camera/person_x/"...
        folders_rd = os.listdir(self.path_photos_from_camera)
        for i in range(len(folders_rd)):
            shutil.rmtree(self.path_photos_from_camera+folders_rd[i])
        if os.path.isfile("data/features_all.csv"):
            os.remove("data/features_all.csv")

    # 如果有之前录入的人脸, 在之前 person_x 的序号按照 person_x+1 开始录入 / Start from person_x+1
    def check_existing_faces_cnt(self):
        if os.listdir("data/data_faces_from_camera/"):
            # 获取已录入的最后一个人脸序号 / Get the order of latest person
            person_list = os.listdir("data/data_faces_from_camera/")
            person_num_list = []
            for person in person_list:
                person_num_list.append(int(person.split('_')[-1]))
            self.existing_faces_cnt = max(person_num_list)

        # 如果第一次存储或者没有之前录入的人脸, 按照 person_1 开始录入 / Start from person_1
        else:
            self.existing_faces_cnt = 0

    # 更新 FPS / Update FPS of Video stream
    def update_fps(self):
        now = time.time()
        # 每秒刷新 fps / Refresh fps per second
        if str(self.start_time).split(".")[0] != str(now).split(".")[0]:
            self.fps_show = self.fps
        self.start_time = now
        self.frame_time = now - self.frame_start_time
        self.fps = 1.0 / self.frame_time
        self.frame_start_time = now

    # 生成的 cv2 window 上面添加说明文字 / PutText on cv2 window
    def draw_note(self, img_rd):
        # 添加说明 / Add some notes
        cv2.putText(img_rd, "Face Register", (20, 40), self.font, 1, (255, 255, 255), 1, cv2.LINE_AA)
        cv2.putText(img_rd, "FPS:   " + str(self.fps_show.__round__(2)), (20, 100), self.font, 0.8, (0, 255, 0), 1,
                    cv2.LINE_AA)
        cv2.putText(img_rd, "Faces: " + str(self.current_frame_faces_cnt), (20, 140), self.font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
        cv2.putText(img_rd, "N: Create face folder", (20, 350), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
        cv2.putText(img_rd, "S: Save current face", (20, 400), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
        cv2.putText(img_rd, "Q: Quit", (20, 450), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)

    # 获取人脸 / Main process of face detection and saving
    def process(self, stream):
        # 1. 新建储存人脸图像文件目录 / Create folders to save photos
        self.pre_work_mkdir()

        # 2. 删除 "/data/data_faces_from_camera" 中已有人脸图像文件
        # / Uncomment if want to delete the saved faces and start from person_1
        # if os.path.isdir(self.path_photos_from_camera):
        #     self.pre_work_del_old_face_folders()

        # 3. 检查 "/data/data_faces_from_camera" 中已有人脸文件
        self.check_existing_faces_cnt()

        while stream.isOpened():
            flag, img_rd = stream.read()        # Get camera video stream
            kk = cv2.waitKey(1)
            faces = detector(img_rd, 0)         # Use Dlib face detector

            # 4. 按下 'n' 新建存储人脸的文件夹 / Press 'n' to create the folders for saving faces
            if kk == ord('n'):
                self.existing_faces_cnt += 1
                current_face_dir = self.path_photos_from_camera + "person_" + str(self.existing_faces_cnt)
                os.makedirs(current_face_dir)
                logging.info("\n%-40s %s", "新建的人脸文件夹 / Create folders:", current_face_dir)

                self.ss_cnt = 0                 # 将人脸计数器清零 / Clear the cnt of screen shots
                self.press_n_flag = 1           # 已经按下 'n' / Pressed 'n' already

            # 5. 检测到人脸 / Face detected
            if len(faces) != 0:
                # 矩形框 / Show the ROI of faces
                for k, d in enumerate(faces):
                    # 计算矩形框大小 / Compute the size of rectangle box
                    height = (d.bottom() - d.top())
                    width = (d.right() - d.left())
                    hh = int(height/2)
                    ww = int(width/2)

                    # 6. 判断人脸矩形框是否超出 480x640 / If the size of ROI > 480x640
                    if (d.right()+ww) > 640 or (d.bottom()+hh > 480) or (d.left()-ww < 0) or (d.top()-hh < 0):
                        cv2.putText(img_rd, "OUT OF RANGE", (20, 300), self.font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)
                        color_rectangle = (0, 0, 255)
                        save_flag = 0
                        if kk == ord('s'):
                            logging.warning("请调整位置 / Please adjust your position")
                    else:
                        color_rectangle = (255, 255, 255)
                        save_flag = 1

                    cv2.rectangle(img_rd,
                                  tuple([d.left() - ww, d.top() - hh]),
                                  tuple([d.right() + ww, d.bottom() + hh]),
                                  color_rectangle, 2)

                    # 7. 根据人脸大小生成空的图像 / Create blank image according to the size of face detected
                    img_blank = np.zeros((int(height*2), width*2, 3), np.uint8)

                    if save_flag:
                        # 8. 按下 's' 保存摄像头中的人脸到本地 / Press 's' to save faces into local images
                        if kk == ord('s'):
                            # 检查有没有先按'n'新建文件夹 / Check if you have pressed 'n'
                            if self.press_n_flag:
                                self.ss_cnt += 1
                                for ii in range(height*2):
                                    for jj in range(width*2):
                                        img_blank[ii][jj] = img_rd[d.top()-hh + ii][d.left()-ww + jj]
                                cv2.imwrite(current_face_dir + "/img_face_" + str(self.ss_cnt) + ".jpg", img_blank)
                                logging.info("%-40s %s/img_face_%s.jpg", "写入本地 / Save into:",
                                             str(current_face_dir), str(self.ss_cnt))
                            else:
                                logging.warning("请先按 'N' 来建文件夹, 按 'S' / Please press 'N' and press 'S'")

            self.current_frame_faces_cnt = len(faces)

            # 9. 生成的窗口添加说明文字 / Add note on cv2 window
            self.draw_note(img_rd)

            # 10. 按下 'q' 键退出 / Press 'q' to exit
            if kk == ord('q'):
                break

            # 11. Update FPS
            self.update_fps()

            cv2.namedWindow("camera", 1)
            cv2.imshow("camera", img_rd)

    def run(self):
        # cap = cv2.VideoCapture("video.mp4")   # Get video stream from video file
        cap = cv2.VideoCapture(0)               # Get video stream from camera
        self.process(cap)

        cap.release()
        cv2.destroyAllWindows()


def main():
    logging.basicConfig(level=logging.INFO)
    Face_Register_con = Face_Register()
    Face_Register_con.run()


if __name__ == '__main__':
    main()

2.2 提取录入的人脸特征

features_extraction_to_csv.py
# Copyright (C) 2018-2021 coneypo
# SPDX-License-Identifier: MIT

# Author:   coneypo
# Blog:     http://www.cnblogs.com/AdaminXie
# GitHub:   https://github.com/coneypo/Dlib_face_recognition_from_camera
# Mail:     [email protected]

# 从人脸图像文件中提取人脸特征存入 "features_all.csv" / Extract features from images and save into "features_all.csv"

import os
import dlib
import csv
import numpy as np
import logging
import cv2

# 要读取人脸图像文件的路径 / Path of cropped faces
path_images_from_camera = "data/data_faces_from_camera/"

# Dlib 正向人脸检测器 / Use frontal face detector of Dlib
detector = dlib.get_frontal_face_detector()

# Dlib 人脸 landmark 特征点检测器 / Get face landmarks
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')

# Dlib Resnet 人脸识别模型,提取 128D 的特征矢量 / Use Dlib resnet50 model to get 128D face descriptor
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")


# 返回单张图像的 128D 特征 / Return 128D features for single image
# Input:    path_img           
# Output:   face_descriptor    
def return_128d_features(path_img):
    img_rd = cv2.imread(path_img)
    faces = detector(img_rd, 1)

    logging.info("%-40s %-20s", "检测到人脸的图像 / Image with faces detected:", path_img)

    # 因为有可能截下来的人脸再去检测,检测不出来人脸了, 所以要确保是 检测到人脸的人脸图像拿去算特征
    # For photos of faces saved, we need to make sure that we can detect faces from the cropped images
    if len(faces) != 0:
        shape = predictor(img_rd, faces[0])
        face_descriptor = face_reco_model.compute_face_descriptor(img_rd, shape)
    else:
        face_descriptor = 0
        logging.warning("no face")
    return face_descriptor


# 返回 personX 的 128D 特征均值 / Return the mean value of 128D face descriptor for person X
# Input:    path_face_personX        
# Output:   features_mean_personX    
def return_features_mean_personX(path_face_personX):
    features_list_personX = []
    photos_list = os.listdir(path_face_personX)
    if photos_list:
        for i in range(len(photos_list)):
            # 调用 return_128d_features() 得到 128D 特征 / Get 128D features for single image of personX
            logging.info("%-40s %-20s", "正在读的人脸图像 / Reading image:", path_face_personX + "/" + photos_list[i])
            features_128d = return_128d_features(path_face_personX + "/" + photos_list[i])
            # 遇到没有检测出人脸的图片跳过 / Jump if no face detected from image
            if features_128d == 0:
                i += 1
            else:
                features_list_personX.append(features_128d)
    else:
        logging.warning("文件夹内图像文件为空 / Warning: No images in%s/", path_face_personX)

    # 计算 128D 特征的均值 / Compute the mean
    # personX 的 N 张图像 x 128D -> 1 x 128D
    if features_list_personX:
        features_mean_personX = np.array(features_list_personX, dtype=object).mean(axis=0)
    else:
        features_mean_personX = np.zeros(128, dtype=object, order='C')
    return features_mean_personX


def main():
    logging.basicConfig(level=logging.INFO)
    # 获取已录入的最后一个人脸序号 / Get the order of latest person
    person_list = os.listdir("data/data_faces_from_camera/")
    person_list.sort()

    with open("data/features_all.csv", "w", newline="") as csvfile:
        writer = csv.writer(csvfile)
        for person in person_list:
            # Get the mean/average features of face/personX, it will be a list with a length of 128D
            logging.info("%sperson_%s", path_images_from_camera, person)
            features_mean_personX = return_features_mean_personX(path_images_from_camera + person)

            if len(person.split('_', 2)) == 2:
                # "person_x"
                person_name = person
            else:
                # "person_x_tom"
                person_name = person.split('_', 2)[-1]
            features_mean_personX = np.insert(features_mean_personX, 0, person_name, axis=0)
            # features_mean_personX will be 129D, person name + 128 features
            writer.writerow(features_mean_personX)
            logging.info('\n')
        logging.info("所有录入人脸数据存入 / Save all the features of faces registered into: data/features_all.csv")


if __name__ == '__main__':
    main()

2.3 实时捕获人脸并进行识别

face_reco_from_camera.py
# Copyright (C) 2018-2021 coneypo
# SPDX-License-Identifier: MIT

# Author:   coneypo
# Blog:     http://www.cnblogs.com/AdaminXie
# GitHub:   https://github.com/coneypo/Dlib_face_recognition_from_camera
# Mail:     [email protected]

# 摄像头实时人脸识别 / Real-time face detection and recognition

import dlib
import numpy as np
import cv2
import pandas as pd
import os
import time
import logging
from PIL import Image, ImageDraw, ImageFont

# Dlib 正向人脸检测器 / Use frontal face detector of Dlib
detector = dlib.get_frontal_face_detector()

# Dlib 人脸 landmark 特征点检测器 / Get face landmarks
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')

# Dlib Resnet 人脸识别模型,提取 128D 的特征矢量 / Use Dlib resnet50 model to get 128D face descriptor
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")


class Face_Recognizer:
    def __init__(self):
        self.face_feature_known_list = []                # 用来存放所有录入人脸特征的数组 / Save the features of faces in database
        self.face_name_known_list = []                   # 存储录入人脸名字 / Save the name of faces in database

        self.current_frame_face_cnt = 0                     # 存储当前摄像头中捕获到的人脸数 / Counter for faces in current frame
        self.current_frame_face_feature_list = []           # 存储当前摄像头中捕获到的人脸特征 / Features of faces in current frame
        self.current_frame_face_name_list = []              # 存储当前摄像头中捕获到的所有人脸的名字 / Names of faces in current frame
        self.current_frame_face_name_position_list = []     # 存储当前摄像头中捕获到的所有人脸的名字坐标 / Positions of faces in current frame

        # Update FPS
        self.fps = 0                    # FPS of current frame
        self.fps_show = 0               # FPS per second
        self.frame_start_time = 0
        self.frame_cnt = 0
        self.start_time = time.time()

        self.font = cv2.FONT_ITALIC
        self.font_chinese = ImageFont.truetype("simsun.ttc", 30)

    # 从 "features_all.csv" 读取录入人脸特征 / Read known faces from "features_all.csv"
    def get_face_database(self):
        if os.path.exists("data/features_all.csv"):
            path_features_known_csv = "data/features_all.csv"
            csv_rd = pd.read_csv(path_features_known_csv, header=None)
            for i in range(csv_rd.shape[0]):
                features_someone_arr = []
                self.face_name_known_list.append(csv_rd.iloc[i][0])
                for j in range(1, 129):
                    if csv_rd.iloc[i][j] == '':
                        features_someone_arr.append('0')
                    else:
                        features_someone_arr.append(csv_rd.iloc[i][j])
                self.face_feature_known_list.append(features_someone_arr)
            logging.info("Faces in Database:%d", len(self.face_feature_known_list))
            return 1
        else:
            logging.warning("'features_all.csv' not found!")
            logging.warning("Please run 'get_faces_from_camera.py' "
                            "and 'features_extraction_to_csv.py' before 'face_reco_from_camera.py'")
            return 0

    # 计算两个128D向量间的欧式距离 / Compute the e-distance between two 128D features
    @staticmethod
    def return_euclidean_distance(feature_1, feature_2):
        feature_1 = np.array(feature_1)
        feature_2 = np.array(feature_2)
        dist = np.sqrt(np.sum(np.square(feature_1 - feature_2)))
        return dist

    # 更新 FPS / Update FPS of Video stream
    def update_fps(self):
        now = time.time()
        # 每秒刷新 fps / Refresh fps per second
        if str(self.start_time).split(".")[0] != str(now).split(".")[0]:
            self.fps_show = self.fps
        self.start_time = now
        self.frame_time = now - self.frame_start_time
        self.fps = 1.0 / self.frame_time
        self.frame_start_time = now

    # 生成的 cv2 window 上面添加说明文字 / PutText on cv2 window
    def draw_note(self, img_rd):
        cv2.putText(img_rd, "Face Recognizer", (20, 40), self.font, 1, (255, 255, 255), 1, cv2.LINE_AA)
        cv2.putText(img_rd, "Frame:  " + str(self.frame_cnt), (20, 100), self.font, 0.8, (0, 255, 0), 1,
                    cv2.LINE_AA)
        cv2.putText(img_rd, "FPS:    " + str(self.fps_show.__round__(2)), (20, 130), self.font, 0.8, (0, 255, 0), 1,
                    cv2.LINE_AA)
        cv2.putText(img_rd, "Faces:  " + str(self.current_frame_face_cnt), (20, 160), self.font, 0.8, (0, 255, 0), 1,
                    cv2.LINE_AA)
        cv2.putText(img_rd, "Q: Quit", (20, 450), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)

    def draw_name(self, img_rd):
        # 在人脸框下面写人脸名字 / Write names under rectangle
        img = Image.fromarray(cv2.cvtColor(img_rd, cv2.COLOR_BGR2RGB))
        draw = ImageDraw.Draw(img)
        for i in range(self.current_frame_face_cnt):
            # cv2.putText(img_rd, self.current_frame_face_name_list[i], self.current_frame_face_name_position_list[i], self.font, 0.8, (0, 255, 255), 1, cv2.LINE_AA)
            draw.text(xy=self.current_frame_face_name_position_list[i], text=self.current_frame_face_name_list[i], font=self.font_chinese,
                  fill=(255, 255, 0))
            img_rd = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
        return img_rd

    # 修改显示人名 / Show names in chinese
    def show_chinese_name(self):
        # Default known name: person_1, person_2, person_3
        if self.current_frame_face_cnt >= 1:
            # 修改录入的人脸姓名 / Modify names in face_name_known_list to chinese name
            self.face_name_known_list[0] = '张三'.encode('utf-8').decode()
            # self.face_name_known_list[1] = '张四'.encode('utf-8').decode()

    # 处理获取的视频流,进行人脸识别 / Face detection and recognition from input video stream
    def process(self, stream):
        # 1. 读取存放所有人脸特征的 csv / Read known faces from "features.all.csv"
        if self.get_face_database():
            while stream.isOpened():
                self.frame_cnt += 1
                logging.debug("Frame %d starts", self.frame_cnt)
                flag, img_rd = stream.read()
                faces = detector(img_rd, 0)
                kk = cv2.waitKey(1)
                # 按下 q 键退出 / Press 'q' to quit
                if kk == ord('q'):
                    break
                else:
                    self.draw_note(img_rd)
                    self.current_frame_face_feature_list = []
                    self.current_frame_face_cnt = 0
                    self.current_frame_face_name_position_list = []
                    self.current_frame_face_name_list = []

                    # 2. 检测到人脸 / Face detected in current frame
                    if len(faces) != 0:
                        # 3. 获取当前捕获到的图像的所有人脸的特征 / Compute the face descriptors for faces in current frame
                        for i in range(len(faces)):
                            shape = predictor(img_rd, faces[i])
                            self.current_frame_face_feature_list.append(face_reco_model.compute_face_descriptor(img_rd, shape))
                        # 4. 遍历捕获到的图像中所有的人脸 / Traversal all the faces in the database
                        for k in range(len(faces)):
                            logging.debug("For face %d in camera:", k+1)
                            # 先默认所有人不认识,是 unknown / Set the default names of faces with "unknown"
                            self.current_frame_face_name_list.append("unknown")

                            # 每个捕获人脸的名字坐标 / Positions of faces captured
                            self.current_frame_face_name_position_list.append(tuple(
                                [faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top()) / 4)]))

                            # 5. 对于某张人脸,遍历所有存储的人脸特征
                            # For every faces detected, compare the faces in the database
                            current_frame_e_distance_list = []
                            for i in range(len(self.face_feature_known_list)):
                                # 如果 person_X 数据不为空
                                if str(self.face_feature_known_list[i][0]) != '0.0':
                                    e_distance_tmp = self.return_euclidean_distance(self.current_frame_face_feature_list[k],
                                                                                    self.face_feature_known_list[i])
                                    logging.debug("  With person %s, the e-distance is %f", str(i + 1), e_distance_tmp)
                                    current_frame_e_distance_list.append(e_distance_tmp)
                                else:
                                    # 空数据 person_X
                                    current_frame_e_distance_list.append(999999999)
                            # 6. 寻找出最小的欧式距离匹配 / Find the one with minimum e-distance
                            similar_person_num = current_frame_e_distance_list.index(min(current_frame_e_distance_list))
                            logging.debug("Minimum e-distance with %s: %f", self.face_name_known_list[similar_person_num], min(current_frame_e_distance_list))

                            if min(current_frame_e_distance_list) < 0.4:
                                self.current_frame_face_name_list[k] = self.face_name_known_list[similar_person_num]
                                logging.debug("Face recognition result: %s", self.face_name_known_list[similar_person_num])
                            else:
                                logging.debug("Face recognition result: Unknown person")
                            logging.debug("\n")

                            # 矩形框 / Draw rectangle
                            for kk, d in enumerate(faces):
                                # 绘制矩形框
                                cv2.rectangle(img_rd, tuple([d.left(), d.top()]), tuple([d.right(), d.bottom()]),
                                              (255, 255, 255), 2)

                        self.current_frame_face_cnt = len(faces)

                        # 7. 在这里更改显示的人名 / Modify name if needed
                        # self.show_chinese_name()

                        # 8. 写名字 / Draw name
                        img_with_name = self.draw_name(img_rd)

                    else:
                        img_with_name = img_rd

                logging.debug("Faces in camera now: %s", self.current_frame_face_name_list)

                cv2.imshow("camera", img_with_name)

                # 9. 更新 FPS / Update stream FPS
                self.update_fps()
                logging.debug("Frame ends\n\n")

    # OpenCV 调用摄像头并进行 process
    def run(self):
        # cap = cv2.VideoCapture("video.mp4")  # Get video stream from video file
        cap = cv2.VideoCapture(0)              # Get video stream from camera
        cap.set(3, 480)                        # 640x480
        self.process(cap)

        cap.release()
        cv2.destroyAllWindows()


def main():
    # logging.basicConfig(level=logging.DEBUG) # Set log level to 'logging.DEBUG' to print debug info of every frame
    logging.basicConfig(level=logging.INFO)
    Face_Recognizer_con = Face_Recognizer()
    Face_Recognizer_con.run()


if __name__ == '__main__':
    main()

识别结果(我和我的无美颜照片):

通过Dlib和opencv实现人脸识别和活体检测_第3张图片

(自己的脸,马赛克一下) 

可以看出, 识别效果还是很不错的。

三、活体检测

3.1 眨眼检测

经过查询资料,得到广为人使用的一个指标:眼睛纵横比(EAR)

bydemo

EAR = \frac{\left (\left | p2-p6 \right | + \left | p3-p5 \right |\right )}{2\left | p1-p4 \right |}

分别得到两只眼睛的纵横比并取平均值,作为眨眼的指标,经过多次测试后,选取0.3作为阈值。

在连续检测到两次EAR小于阈值,即眼睛一睁一闭时,我们将记录为一次眨眼。

代码如下,实验结果如图:

通过Dlib和opencv实现人脸识别和活体检测_第4张图片

from scipy.spatial import distance as dist
from imutils.video import VideoStream
from imutils import face_utils
import imutils
import time
import dlib
import cv2


def EAR(eye):
	# 计算眼睛的两组垂直关键点之间的欧式距离
	A = dist.euclidean(eye[1], eye[5])		# 1,5是一组垂直关键点
	B = dist.euclidean(eye[2], eye[4])		# 2,4是一组
	# 计算眼睛的一组水平关键点之间的欧式距离
	C = dist.euclidean(eye[0], eye[3])		# 0,3是一组水平关键点

	return (A + B) / (2.0 * C)

def main():

	EAR_THRESH = 0.3		# 眨眼阈值
	EYE_close = 2		# 闭眼次数阈值

	# 初始化眨眼帧计数器和总眨眼次数
	count_eye = 0
	total = 0
	detector = dlib.get_frontal_face_detector()
	predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')

	# 左右眼的索引
	(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
	(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]

	vs = VideoStream(src=0).start()
	time.sleep(1.0)

	while True:

		frame = vs.read()
		frame = imutils.resize(frame, width=600)
		gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

		# 在灰度框中检测人脸
		rects = detector(gray, 0)

		# 进入循环
		for rect in rects:
			shape = predictor(gray, rect)
			shape = face_utils.shape_to_np(shape)

			# 提取左眼和右眼坐标,然后使用该坐标计算两只眼睛的眼睛纵横比
			leftEye = shape[lStart:lEnd]
			rightEye = shape[rStart:rEnd]
			ear = EAR(leftEye) + EAR(rightEye) / 2.0
			# 判断眼睛纵横比是否低于眨眼阈值
			if ear < EAR_THRESH:
				count_eye += 1
			else:
				# 检测到一次闭眼
				if count_eye >= EYE_close:
					total += 1
				count_eye = 0

			# 画出画框上眨眼的总次数以及计算出的帧的眼睛纵横比
			cv2.putText(frame, "Blinks: {}".format(total), (10, 30),
				cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
			cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30),
				cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)

		cv2.imshow("Frame", frame)
		key = cv2.waitKey(1) & 0xFF

		if key == ord("q"):
			break

	cv2.destroyAllWindows()
	vs.stop()


if __name__ == '__main__':
	main()

3.2 张嘴检测

同理,可以做张嘴检测:

通过Dlib和opencv实现人脸识别和活体检测_第5张图片

from imutils.video import VideoStream
from imutils import face_utils
import imutils
import time
import dlib
import cv2
import numpy as np

def MAR(mouth):
	# 默认二范数:求特征值,然后求最大特征值得算术平方根
	A = np.linalg.norm(mouth[2] - mouth[9])  # 51, 59(人脸68个关键点)
	B = np.linalg.norm(mouth[4] - mouth[7])  # 53, 57
	C = np.linalg.norm(mouth[0] - mouth[6])  # 49, 55

	return (A + B) / (2.0 * C)

def main():

	MAR_THRESH = 0.5		# 张嘴阈值

	# 初始化
	COUNTER_MOUTH = 0
	TOTAL_MOUTH = 0
	detector = dlib.get_frontal_face_detector()
	predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')

	# 嘴的索引
	(mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]

	vs = VideoStream(src=0).start()
	time.sleep(1.0)

	while True:

		frame = vs.read()
		frame = imutils.resize(frame, width=600)
		gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

		# 在灰度框中检测人脸
		rects = detector(gray, 0)

		# 进入循环
		for rect in rects:
			shape = predictor(gray, rect)
			shape = face_utils.shape_to_np(shape)

			# 提取嘴唇坐标,然后使用该坐标计算嘴唇纵横比
			Mouth = shape[mStart:mEnd]
			mar = MAR(Mouth)
			# 判断嘴唇纵横比是否高于张嘴阈值,如果是,则增加张嘴帧计数器
			if mar > MAR_THRESH:
				COUNTER_MOUTH += 1

			else:
				# 如果张嘴帧计数器不等于0,则增加张嘴的总次数
				if COUNTER_MOUTH >= 2:
					TOTAL_MOUTH += 1
				COUNTER_MOUTH = 0

			cv2.putText(frame, "Mouth is open: {}".format(TOTAL_MOUTH), (10, 60),
						cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
			cv2.putText(frame, "MAR: {:.2f}".format(mar), (300, 60),
						cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)

		cv2.imshow("Frame", frame)
		key = cv2.waitKey(1) & 0xFF

		if key == ord("q"):
			break

	cv2.destroyAllWindows()
	vs.stop()


if __name__ == '__main__':
	main()

3.3 摇头检测

在手机很多App如支付宝中,摇头也属于非常常见的活体检测手段,此项采用鼻子到左右脸的欧氏距离变化,判断是否摇头。

通过Dlib和opencv实现人脸识别和活体检测_第6张图片

代码如下:

from scipy.spatial import distance as dist
from imutils.video import VideoStream
from imutils import face_utils
import imutils
import time
import dlib
import cv2


def nose_jaw_distance(nose, jaw):
	# 计算鼻子上一点"27"到左右脸边界的欧式距离
	face_left1 = dist.euclidean(nose[0], jaw[0])		# 27, 0
	face_right1 = dist.euclidean(nose[0], jaw[16])		# 27, 16
	# 计算鼻子上一点"30"到左右脸边界的欧式距离
	face_left2 = dist.euclidean(nose[3], jaw[2])  		# 30, 2
	face_right2 = dist.euclidean(nose[3], jaw[14])  	# 30, 14
	# 创建元组,用以保存4个欧式距离值
	face_distance = (face_left1, face_right1, face_left2, face_right2)

	return face_distance

def main():
	# 初始化眨眼帧计数器和总眨眼次数
	distance_left = 0
	distance_right = 0
	TOTAL_FACE = 0
	detector = dlib.get_frontal_face_detector()
	predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')

	(nStart, nEnd) = face_utils.FACIAL_LANDMARKS_IDXS["nose"]
	(jStart, jEnd) = face_utils.FACIAL_LANDMARKS_IDXS['jaw']

	vs = VideoStream(src=0).start()
	time.sleep(1.0)

	while True:

		frame = vs.read()
		frame = imutils.resize(frame, width=600)
		gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

		# 在灰度框中检测人脸
		rects = detector(gray, 0)

		# 进入循环
		for rect in rects:
			shape = predictor(gray, rect)
			shape = face_utils.shape_to_np(shape)

			# 提取鼻子和下巴的坐标,然后使用该坐标计算鼻子到左右脸边界的欧式距离
			nose = shape[nStart:nEnd]
			jaw = shape[jStart:jEnd]
			NOSE_JAW_Distance = nose_jaw_distance(nose, jaw)
			# 移植鼻子到左右脸边界的欧式距离
			face_left1 = NOSE_JAW_Distance[0]
			face_right1 = NOSE_JAW_Distance[1]
			face_left2 = NOSE_JAW_Distance[2]
			face_right2 = NOSE_JAW_Distance[3]

			# 根据鼻子到左右脸边界的欧式距离,判断是否摇头
			# 左脸大于右脸
			if face_left1 >= face_right1 + 2 and face_left2 >= face_right2 + 2:
				distance_left += 1
			# 右脸大于左脸
			if face_right1 >= face_left1 + 2 and face_right2 >= face_left2 + 2:
				distance_right += 1
			# 左脸大于右脸,并且右脸大于左脸,判定摇头
			if distance_left != 0 and distance_right != 0:
				TOTAL_FACE += 1
				distance_right = 0
				distance_left = 0

			# 画出摇头次数
			cv2.putText(frame, "shake one's head: {}".format(TOTAL_FACE), (10, 90),
						cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)

		cv2.imshow("Frame", frame)
		key = cv2.waitKey(1) & 0xFF

		if key == ord("q"):
			break

	cv2.destroyAllWindows()
	vs.stop()


if __name__ == '__main__':
	main()

你可能感兴趣的:(opencv,人工智能,计算机视觉,python)