- 【python深度学习】DAY 51 复习日
抽风的雨610
【打卡】Python训练营python深度学习开发语言
作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高1.读取数据使用CIFAR-10图像数据importtorchfromtorchvisionimportdatasets,transforms#数据预处理transform=transforms.Compose([transforms.ToTensor(),transforms.
- 学习笔记——pytorch1.9.0官方文档快速入门(三)
面包猎人
笔记算法深度学习机器学习pythonpytorch
目录参考笔记链接transforms介绍ToTensor()LambdaTransforms参考官方文档——Transforms转换运行环境:googlecolab笔记链接学习笔记——pytorch1.9.0官方文档快速入门(一)学习笔记——pytorch1.9.0官方文档快速入门(二)学习笔记——pytorch1.9.0官方文档快速入门(三)学习笔记——pytorch1.9.0官方文档快速入门(
- pytorch深度学习入门(12)之-神经网络导出onnx模型部署与应用
码农呆呆
深度学习深度学习pytorch神经网络
概述:ONNX(OpenNeuralNetworkExchange)是一种开放神经网络交换格式,它使得不同深度学习框架(如TensorFlow、PyTorch、MXNet等)之间的互操作成为可能。ONNX提供了一种标准化的方式,可以将训练好的模型导出并转换为ONNX格式,然后可以在其他支持ONNX的框架或工具中进行部署和推理。ONNX的主要优势在于它促进了深度学习模型在不同平台之间的互操作性和可移
- 《动手学深度学习》-2.1. 数据操作
SSWDUT
动手学深度学习深度学习人工智能
2.1.数据操作为了能够完成各种数据操作,我们需要某种方法来存储和操作数据。通常,我们需要做两件重要的事:(1)获取数据;(2)将数据读入计算机后对其进行处理。如果没有某种方法来存储数据,那么获取数据是没有意义的。首先,我们介绍n维数组,也称为张量(tensor)。使用过Python中NumPy计算包的读者会对本部分很熟悉。无论使用哪个深度学习框架,它的张量类(在MXNet中为ndarray,在P
- 深入理解 transforms.Normalize():PyTorch 图像预处理中的关键一步
述雾学java
pytorch人工智能python
深入理解transforms.Normalize():PyTorch图像预处理中的关键一步在使用PyTorch进行图像分类、目标检测等深度学习任务时,我们常常会在数据预处理部分看到如下代码:python复制编辑transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.5,0.5,0.5],std
- MXNet深度学习框架入门指南:核心概念与架构解析
陆璞朝Jocelyn
MXNet深度学习框架入门指南:核心概念与架构解析mxnet项目地址:https://gitcode.com/gh_mirrors/mx/mxnet什么是MXNetApacheMXNet是一个开源的深度学习框架,它提供了全面而灵活的API来创建深度学习模型。作为现代深度学习的重要工具,MXNet在工业界和学术界都得到了广泛应用。MXNet的核心优势高性能与可扩展性:原生支持多GPU和分布式多主机任
- Dive-into-DL-PyTorch项目解析:目标检测中的R-CNN系列算法演进
陆或愉
Dive-into-DL-PyTorch项目解析:目标检测中的R-CNN系列算法演进Dive-into-DL-PyTorch本项目将《动手学深度学习》(DiveintoDeepLearning)原书中的MXNet实现改为PyTorch实现。项目地址:https://gitcode.com/gh_mirrors/di/Dive-into-DL-PyTorch引言目标检测是计算机视觉领域的核心任务之一
- torchvision中数据集的使用
玛卡巴卡的冲锋艇
pytorch深度学习人工智能
中心内容:torchvision中数据集的使用以及如何将数据集与transforms结合使用代码实战:importtorchvisionfromtorchvisionimporttransformsfromtorch.utils.tensorboardimportSummaryWriter#将照片从PIL类型转化为tensor类型方法tensor_trans=transforms.ToTensor
- 解决Linux服务器MXNet安装与`npx`模块问题
cocogogogo
服务器linuxmxnet
解决Linux服务器MXNet安装与npx模块问题背景在Ubuntu18.04服务器上,通过Mac终端在pytorch_env(Python3.9.21)中解决MXNet相关错误,最终实现npx模块使用。问题及解决步骤1.问题:AttributeError:module'numpy'hasnoattribute'bool'环境:MXNet1.5.1,NumPy1.24.4。原因:NumPy1.20
- EXO:模型最终验证的地方;infer_tensor;step;MLXDynamicShardInferenceEngine
ZhangJiQun&MXP
2024大模型以及算力2021AIpython教学语言模型transformer人工智能
目录EXO:模型最终验证的地方EXO:infer_tensorEXO:stepMXNet的mx.array类型是什么NDArray优化了什么1.异步计算和内存优化2.高效的数学和线性代数运算3.稀疏数据支持4.自动化求导举例说明EXO:模型最终验证的地方EXO:infer_tensor这段代码定义了一个名为infer_tensor的异步方法,它属于某个类(虽然类名未在此代码段中给出)。这个方法的目
- 深度学习模型优化与行业应用新突破
智能计算研究中心
其他
内容概要当前深度学习模型优化正经历多维技术革新,核心突破集中在算法效率与场景适配性提升。以自适应学习优化和超参数调优为代表的动态调整机制,显著降低了模型训练对人工经验的依赖。主流框架如MXNet与PyTorch在分布式计算、自动微分等关键能力上形成差异化优势(见表1),而边缘计算与联邦学习的融合,则通过本地化数据处理与隐私保护机制,为医疗影像诊断、金融风险预测等高敏感场景提供了可信部署方案。框架特
- 模型优化技术驱动行业应用创新
智能计算研究中心
其他
内容概要当前模型优化技术正通过多维度创新重构行业应用版图。从底层框架演进看,TensorFlow、PyTorch与MXNet等主流工具通过自适应学习机制与参数化建模能力,显著提升了模型训练效率;而在技术融合层面,联邦学习与边缘计算的协同部署方案,为解决数据隐私与算力瓶颈提供了新范式。与此同时,量子计算驱动的新型优化算法正突破传统数学模型的性能边界,结合可解释性增强与超参数动态调整策略,使医疗诊断、
- 智能模型优化趋势与行业实践突破
智能计算研究中心
其他
内容概要当前智能模型优化技术正沿着多维度路径加速演进,其中自动化机器学习(AutoML)与可解释性模型的融合成为降低技术门槛的核心方向。从技术演进路径来看,边缘计算与联邦学习的结合显著提升了分布式场景下的模型效率,而量子计算的引入则为复杂优化问题提供了突破性思路。与此同时,MXNet、PyTorch等主流框架在动态计算图与分布式训练方面的创新,进一步推动了行业模型的快速迭代。为系统呈现技术趋势与实
- 【无标题】pytorch数据处理工具箱
zzh-
笔记
transformstransforms提供了对PILImage对象和Tensor对象的常用操作。Scale/Resize调整尺寸,长宽比保持不变。CenterCrop、RandomCrop、RandomSizedCrop裁剪图像。Pad填充。ToTensor把一个取值范围是[0,255]的PIL.Image转换成Tensor。RandomHorizontalFlip图像随机水平翻转transfo
- 模型优化技术演进与行业场景突破
智能计算研究中心
其他
内容概要模型优化技术正经历从算法改进到系统级创新的范式跃迁。随着自动化机器学习(AutoML)与联邦学习技术的成熟,模型开发效率与隐私保护能力显著提升,而模型压缩技术则推动轻量化部署在边缘计算场景中加速落地。与此同时,量子计算为优化算法提供了新的计算维度,MXNet、PyTorch等框架通过动态计算图特性,在医疗影像识别和语音交互领域实现推理速度的突破性进展。技术演进阶段核心技术突破典型应用场景主
- 智能模型优化与跨行业应用趋势
智能计算研究中心
其他
内容概要智能模型优化技术正经历多维度的范式突破,从算法架构到部署模式均呈现显著变革。核心演进路径涵盖三大维度:在技术层,自动化机器学习(AutoML)与自适应学习优化技术大幅降低建模门槛,结合超参数优化与正则化方法,实现模型性能与效率的平衡;在架构层,边缘计算与联邦学习推动分布式模型部署,MXNet、PyTorch等框架通过模型压缩与量化技术,适配低功耗设备部署需求;在应用层,医疗诊断、金融预测等
- AI模型技术演进与行业应用图谱
智能计算研究中心
其他
内容概要当前AI模型技术正经历从基础架构到行业落地的系统性革新。主流深度学习框架如TensorFlow和PyTorch持续优化动态计算图与分布式训练能力,而MXNet凭借高效的异构计算支持在边缘场景崭露头角。与此同时,模型压缩技术通过量化和知识蒸馏将参数量降低60%-80%,联邦学习则通过加密梯度交换实现多机构数据协同训练。在应用层面,医疗诊断模型通过迁移学习在CT影像分类任务中达到98.2%的准
- AI模型技术前沿与跨场景应用实践
智能计算研究中心
其他
内容概要当前AI模型技术正呈现多维度突破与跨领域融合的特征。从技术演进角度看,可解释性模型与量子计算框架的协同发展正在突破传统黑箱限制,而联邦学习、自适应优化等技术则为复杂场景建模提供了新的方法论支撑。应用层面,TensorFlow与PyTorch框架在医疗影像诊断、金融时序预测等领域的实战案例,验证了深度学习模型在垂直行业的泛化能力。值得关注的是,工具链整合已成为技术落地的关键环节,MXNet与
- AI学习预备知识-数据操作(5)内存节省
羞涩的小吉他
AI开发学习之路人工智能学习
AI学习预备知识-数据操作(5)内存节省提示:本系列持续更新中文章目录AI学习预备知识-数据操作(5)内存节省前言内存节省总结前言随着开始人工智能的学习越来越多,那么再学习过程中,我们应该有一定的基础知识储备,本系列为基础知识储备介绍,本文主要讲解AI学习储备知识–在数据操作过程中所需考虑到的内存节省。内存节省提示:默认使用python,数据操作使用mxnet在数据操作过程中运行一些操作可能会导致
- 蚂蚁集团可转正实习算法岗内推-自然语言
飞300
业界资讯自然语言处理
具备极佳的工程实现能力,精通C/C++、Java、Pvthon、Perl等至少一门语言:对目前主流的深度学习平台:tensorflow、pytorch、mxnet等,至少对其中一个有上手经验;熟悉深度学习以及常见机器学习算法的原理与算法,能熟练运用聚类、分类、回归、排序等模型解决有挑战性的问题,有大数据处理的实战经验;有强烈求知欲,对人工智能领域相关技术有热情,内推链接:https://u.ali
- 跨框架模型演进与行业应用路径
智能计算研究中心
其他
内容概要在人工智能技术持续迭代的背景下,模型框架的演进与行业应用的深度融合已成为推动产业智能化升级的核心驱动力。本文系统性梳理TensorFlow、PyTorch、MXNet等主流框架的技术发展脉络,重点分析其从通用计算架构向多模态、轻量化方向的转型路径。同时,针对模型优化技术领域,深入探讨迁移学习、超参数调优及模型压缩等方法的创新突破,揭示其在降低计算资源消耗、提升推理效率方面的关键作用。在行业
- Java部署机器学习模型:方案二(基于DJL)
iiilloi
机器学习springspringboot
DJL(DeepJavaLibrary)是由亚马逊公司开发的一款开源的深度学习框架,它旨在为Java开发人员提供一个简单而强大的API,使得在Java中使用深度学习变得更加容易。DJL有以下几个方面优势:支持多个底层引擎DJL支持多个底层引擎,包括MXNet、TensorFlow和PyTorch等。这使得DJL可以在多个平台上使用,包括Java、Android、iOS和RaspberryPi等。易
- Apache MXNet:灵活高效的深度学习库
零 度°
python深度学习apachemxnet
ApacheMXNet是一个开源的深度学习框架,适用于灵活的研究原型设计和生产。它提供了一个混合前端,可以无缝地在Gluon(动态图)和Symbolic(静态图)模式之间转换,以提供灵活性和速度。MXNet支持多种语言绑定,包括Python、Scala、Julia、Clojure、Java、C++、R和Perl,并且拥有一个活跃的工具和库生态系统,可以扩展MXNet的功能,支持计算机视觉、自然语言
- Apache MXNet 深度学习框架教程
娄妃元Kacey
ApacheMXNet深度学习框架教程mxnetLightweight,Portable,FlexibleDistributed/MobileDeepLearningwithDynamic,Mutation-awareDataflowDepScheduler;forPython,R,Julia,Scala,Go,Javascriptandmore项目地址:https://gitcode.com/g
- Ubuntu为julia安装深度学习框架MXNet(支持CUDA和OPenCV编译)
盼小辉丶
julia深度学习cmakelinuxmxnetjulialanguage深度学习
Ubuntu为julia安装深度学习框架MXNet(支持CUDA和OPenCV编译)环境介绍与注意事项下载源文件安装依赖编译环境配置安装MXNet测试后记环境介绍与注意事项Ubuntu18.04julia1.5.3CUDA10.1(为了GPU支持,需要安装CUDA和cudnn,可以参考博客,若CUDA版本不同,参考此网站下载合适的MXNet版本)安装MXNet的julia绑定,经过多次测试,并不能
- MXNet深度学习框架:高效与灵活性的结合
原机小子
深度学习mxnet人工智能
标题:MXNet深度学习框架:高效与灵活性的结合MXNet是一个由Apache软件基金会支持的开源深度学习框架,以其高效性能和灵活性而闻名。它最初由亚马逊团队开发,并于2015年开源,迅速成为深度学习领域的一个重要工具。MXNet支持多种编程语言,包括Python、Java、Scala、R、C++等,能够运行在CPU、GPU和云平台上,满足不同场景下的需求。1.MXNet的核心特性MXNet的主要
- 【单层神经网络】基于MXNet的线性回归实现(底层实现)
辰尘_星启
线性回归mxnet机器学习人工智能深度学习神经网络python
写在前面刚开始先从普通的寻优算法开始,熟悉一下学习训练过程下面将使用梯度下降法寻优,但这大概只能是局部最优,它并不是一个十分优秀的寻优算法整体流程生成训练数据集(实际工程中,需要从实际对象身上采集数据)确定模型及其参数(输入输出个数、阶次,偏置等)确定学习方式(损失函数、优化算法,学习率,训练次数,终止条件等)读取数据集(不同的读取方式会影响最终的训练效果)训练模型完整程序及注释fromIPyth
- 线性回归的简单实现
SkaWxp
深度学习深度学习机器学习mxnetgluon
本文是《动手学深度学习》的笔记文章目录线性回归的简单实现生成随机数据集读取数据初始化模型参数定义模型定义损失函数定义优化算法训练模型线性回归的简洁实现生成数据集读取数据定义模型初始化模型参数定义损失函数定义优化算法训练模型线性回归的简单实现用了mxnet中的自动求导和数组结构frommxnetimportautograd,ndimportrandom生成随机数据集只有这个是用了自己造的数据,因为线
- Task01:线性回归;Softmax与分类模型、多层感知机
恰人陈
pytorch机器学习深度学习神经网络
一、mxnet相关函数用法mxnet.nd用法对标numpy库(1)nd.concatfrommxnetimportndnd.concat(X,Y,dim=0)nd.concat(X,Y,dim=1)X,Y为两个矩阵nd.concat为连接矩阵,dim表示连接的维度,若原来两个矩阵为(4,3),dim=0就表示新生成矩阵为(8,3)dim=1表示新生成矩阵为(4,6)(2)y+=xy=y+x这样的
- 【单层神经网络】基于MXNet库简化实现线性回归
辰尘_星启
神经网络mxnet线性回归
写在前面同最开始的两篇文章完整程序及注释'''导入使用的库'''#基本frommxnetimportautograd,nd,gluon#模型、网络frommxnet.gluonimportnnfrommxnetimportinit#学习frommxnet.gluonimportlossasgloss#数据集frommxnet.gluonimportdataasgdata'''生成测试数据集'''#
- C/C++Win32编程基础详解视频下载
择善Zach
编程C++Win32
课题视频:C/C++Win32编程基础详解
视频知识:win32窗口的创建
windows事件机制
主讲:择善Uncle老师
学习交流群:386620625
验证码:625
--
- Guava Cache使用笔记
bylijinnan
javaguavacache
1.Guava Cache的get/getIfPresent方法当参数为null时会抛空指针异常
我刚开始使用时还以为Guava Cache跟HashMap一样,get(null)返回null。
实际上Guava整体设计思想就是拒绝null的,很多地方都会执行com.google.common.base.Preconditions.checkNotNull的检查。
2.Guava
- 解决ora-01652无法通过128(在temp表空间中)
0624chenhong
oracle
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅了oracle的错误代码说明:意思是指temp表空间无法自动扩展temp段。这种问题一般有两种原因:一是临时表空间空间太小,二是不能自动扩展。
分析过程:
既然是temp表空间有问题,那当
- Struct在jsp标签
不懂事的小屁孩
struct
非UI标签介绍:
控制类标签:
1:程序流程控制标签 if elseif else
<s:if test="isUsed">
<span class="label label-success">True</span>
</
- 按对象属性排序
换个号韩国红果果
JavaScript对象排序
利用JavaScript进行对象排序,根据用户的年龄排序展示
<script>
var bob={
name;bob,
age:30
}
var peter={
name;peter,
age:30
}
var amy={
name;amy,
age:24
}
var mike={
name;mike,
age:29
}
var john={
- 大数据分析让个性化的客户体验不再遥远
蓝儿唯美
数据分析
顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。
分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。
然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实
- java笔记4
a-john
java
操作符
1,使用java操作符
操作符接受一个或多个参数,并生成一个新值。参数的形式与普通的方法调用不用,但是效果是相同的。加号和一元的正号(+)、减号和一元的负号(-)、乘号(*)、除号(/)以及赋值号(=)的用法与其他编程语言类似。
操作符作用于操作数,生成一个新值。另外,有些操作符可能会改变操作数自身的
- 从裸机编程到嵌入式Linux编程思想的转变------分而治之:驱动和应用程序
aijuans
嵌入式学习
笔者学习嵌入式Linux也有一段时间了,很奇怪的是很多书讲驱动编程方面的知识,也有很多书将ARM9方面的知识,但是从以前51形式的(对寄存器直接操作,初始化芯片的功能模块)编程方法,和思维模式,变换为基于Linux操作系统编程,讲这个思想转变的书几乎没有,让初学者走了很多弯路,撞了很多难墙。
笔者因此写上自己的学习心得,希望能给和我一样转变
- 在springmvc中解决FastJson循环引用的问题
asialee
循环引用fastjson
我们先来看一个例子:
package com.elong.bms;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import co
- ArrayAdapter和SimpleAdapter技术总结
百合不是茶
androidSimpleAdapterArrayAdapter高级组件基础
ArrayAdapter比较简单,但它只能用于显示文字。而SimpleAdapter则有很强的扩展性,可以自定义出各种效果
ArrayAdapter;的数据可以是数组或者是队列
// 获得下拉框对象
AutoCompleteTextView textview = (AutoCompleteTextView) this
- 九封信
bijian1013
人生励志
有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。有时候,走过熟悉的街角,看到熟悉的背影,突然想起一个人的脸。有时候,发现自己一夜之间就长大了。 2014,写给人
- Linux下安装MySQL Web 管理工具phpMyAdmin
sunjing
PHPInstallphpMyAdmin
PHP http://php.net/
phpMyAdmin http://www.phpmyadmin.net
Error compiling PHP on CentOS x64
一、安装Apache
请参阅http://billben.iteye.com/admin/blogs/1985244
二、安装依赖包
sudo yum install gd
- 分布式系统理论
bit1129
分布式
FLP
One famous theory in distributed computing, known as FLP after the authors Fischer, Lynch, and Patterson, proved that in a distributed system with asynchronous communication and process crashes,
- ssh2整合(spring+struts2+hibernate)-附源码
白糖_
eclipsespringHibernatemysql项目管理
最近抽空又整理了一套ssh2框架,主要使用的技术如下:
spring做容器,管理了三层(dao,service,actioin)的对象
struts2实现与页面交互(MVC),自己做了一个异常拦截器,能拦截Action层抛出的异常
hibernate与数据库交互
BoneCp数据库连接池,据说比其它数据库连接池快20倍,仅仅是据说
MySql数据库
项目用eclipse
- treetable bug记录
braveCS
table
// 插入子节点删除再插入时不能正常显示。修改:
//不知改后有没有错,先做个备忘
Tree.prototype.removeNode = function(node) {
// Recursively remove all descendants of +node+
this.unloadBranch(node);
// Remove
- 编程之美-电话号码对应英语单词
bylijinnan
java算法编程之美
import java.util.Arrays;
public class NumberToWord {
/**
* 编程之美 电话号码对应英语单词
* 题目:
* 手机上的拨号盘,每个数字都对应一些字母,比如2对应ABC,3对应DEF.........,8对应TUV,9对应WXYZ,
* 要求对一段数字,输出其代表的所有可能的字母组合
- jquery ajax读书笔记
chengxuyuancsdn
jQuery ajax
1、jsp页面
<%@ page language="java" import="java.util.*" pageEncoding="GBK"%>
<%
String path = request.getContextPath();
String basePath = request.getScheme()
- JWFD工作流拓扑结构解析伪码描述算法
comsci
数据结构算法工作活动J#
对工作流拓扑结构解析感兴趣的朋友可以下载附件,或者下载JWFD的全部代码进行分析
/* 流程图拓扑结构解析伪码描述算法
public java.util.ArrayList DFS(String graphid, String stepid, int j)
- oracle I/O 从属进程
daizj
oracle
I/O 从属进程
I/O从属进程用于为不支持异步I/O的系统或设备模拟异步I/O.例如,磁带设备(相当慢)就不支持异步I/O.通过使用I/O 从属进程,可以让磁带机模仿通常只为磁盘驱动器提供的功能。就好像支持真正的异步I/O 一样,写设备的进程(调用者)会收集大量数据,并交由写入器写出。数据成功地写出时,写入器(此时写入器是I/O 从属进程,而不是操作系统)会通知原来的调用者,调用者则会
- 高级排序:希尔排序
dieslrae
希尔排序
public void shellSort(int[] array){
int limit = 1;
int temp;
int index;
while(limit <= array.length/3){
limit = limit * 3 + 1;
- 初二下学期难记忆单词
dcj3sjt126com
englishword
kitchen 厨房
cupboard 厨柜
salt 盐
sugar 糖
oil 油
fork 叉;餐叉
spoon 匙;调羹
chopsticks 筷子
cabbage 卷心菜;洋白菜
soup 汤
Italian 意大利的
Indian 印度的
workplace 工作场所
even 甚至;更
Italy 意大利
laugh 笑
m
- Go语言使用MySQL数据库进行增删改查
dcj3sjt126com
mysql
目前Internet上流行的网站构架方式是LAMP,其中的M即MySQL, 作为数据库,MySQL以免费、开源、使用方便为优势成为了很多Web开发的后端数据库存储引擎。MySQL驱动Go中支持MySQL的驱动目前比较多,有如下几种,有些是支持database/sql标准,而有些是采用了自己的实现接口,常用的有如下几种:
http://code.google.c...o-mysql-dri
- git命令
shuizhaosi888
git
---------------设置全局用户名:
git config --global user.name "HanShuliang" //设置用户名
git config --global user.email "
[email protected]" //设置邮箱
---------------查看环境配置
git config --li
- qemu-kvm 网络 nat模式 (四)
haoningabc
kvmqemu
qemu-ifup-NAT
#!/bin/bash
BRIDGE=virbr0
NETWORK=192.168.122.0
GATEWAY=192.168.122.1
NETMASK=255.255.255.0
DHCPRANGE=192.168.122.2,192.168.122.254
TFTPROOT=
BOOTP=
function check_bridge()
- 不要让未来的你,讨厌现在的自己
jingjing0907
生活 奋斗 工作 梦想
故事one
23岁,他大学毕业,放弃了父母安排的稳定工作,独闯京城,在家小公司混个小职位,工作还算顺手,月薪三千,混了混,混走了一年的光阴。 24岁,有了女朋友,从二环12人的集体宿舍搬到香山民居,一间平房,二人世界,爱爱爱。偶然约三朋四友,打扑克搓麻将,日子快乐似神仙; 25岁,出了几次差,调了两次岗,薪水涨了不过百,生猛狂飙的物价让现实血淋淋,无力为心爱银儿购件大牌
- 枚举类型详解
一路欢笑一路走
enum枚举详解enumsetenumMap
枚举类型详解
一.Enum详解
1.1枚举类型的介绍
JDK1.5加入了一个全新的类型的”类”—枚举类型,为此JDK1.5引入了一个新的关键字enum,我们可以这样定义一个枚举类型。
Demo:一个最简单的枚举类
public enum ColorType {
RED
- 第11章 动画效果(上)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Eclipse中jsp、js文件编辑时,卡死现象解决汇总
ljf_home
eclipsejsp卡死js卡死
使用Eclipse编辑jsp、js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲。将所有用过的方法罗列如下:
1、取消验证
windows–>perferences–>validation
把 除了manual 下面的全部点掉,build下只留 classpath dependency Valida
- MySQL编程中的6个重要的实用技巧
tomcat_oracle
mysql
每一行命令都是用分号(;)作为结束
对于MySQL,第一件你必须牢记的是它的每一行命令都是用分号(;)作为结束的,但当一行MySQL被插入在PHP代码中时,最好把后面的分号省略掉,例如:
mysql_query("INSERT INTO tablename(first_name,last_name)VALUES('$first_name',$last_name')");
- zoj 3820 Building Fire Stations(二分+bfs)
阿尔萨斯
Build
题目链接:zoj 3820 Building Fire Stations
题目大意:给定一棵树,选取两个建立加油站,问说所有点距离加油站距离的最大值的最小值是多少,并且任意输出一种建立加油站的方式。
解题思路:二分距离判断,判断函数的复杂度是o(n),这样的复杂度应该是o(nlogn),即使常数系数偏大,但是居然跑了4.5s,也是醉了。 判断函数里面做了3次bfs,但是每次bfs节点最多