LeetCode刷题复盘笔记—一文搞懂动态规划之455. 分发饼干问题(贪心算法系列第一篇)

今日主要总结一下贪心算法的一道题目,455. 分发饼干

题目:455. 分发饼干

Leetcode题目地址
题目描述:
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

示例 1:
输入: g = [1,2,3], s = [1,1]
输出: 1
解释:
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。

示例 2:
输入: g = [1,2], s = [1,2,3]
输出: 2
解释:
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.

提示:

1 <= g.length <= 3 * 104
0 <= s.length <= 3 * 104
1 <= g[i], s[j] <= 231 - 1

本题重难点和思路

为了满足更多的小孩,就不要造成饼干尺寸的浪费。

大尺寸的饼干既可以满足胃口大的孩子也可以满足胃口小的孩子,那么就应该优先满足胃口大的。

这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。

可以尝试使用贪心策略,先将饼干数组和小孩数组排序。

然后从后向前遍历小孩数组,用大饼干优先满足胃口大的,并统计满足小孩数量。

如图:

LeetCode刷题复盘笔记—一文搞懂动态规划之455. 分发饼干问题(贪心算法系列第一篇)_第1张图片
这个例子可以看出饼干9只有喂给胃口为7的小孩,这样才是整体最优解,并想不出反例,那么就可以写代码了。

贪心算法方法一:

优先使用大饼干喂饱大胃口的小孩:

C++代码

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(), g.end());
        sort(s.begin(), s.end());
        int res = 0;
        int j = s.size() - 1;
        for(int i = g.size() - 1; i >= 0; i--){
            if(j >= 0 && s[j] >= g[i]){
                res++;
                j--;
            }
        }
        return res;
    }
};

从代码中可以看出我用了一个j来控制饼干数组的遍历,遍历饼干并没有再起一个for循环,而是采用自减的方式,这也是常用的技巧。

有的同学看到要遍历两个数组,就想到用两个for循环,那样逻辑其实就复杂了。

贪心算法方法二:

也可以换一个思路,小饼干先喂饱小胃口

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(), g.end());
        sort(s.begin(), s.end());
        int res = 0;
        int i = 0;
        for(int j = 0; j < s.size(); j++){
            if(i < g.size() && s[j] >= g[i]){
                res++;
                i++;
            }
        }
        return res;
    }
};

总结

这道题是贪心很好的一道入门题目,思路还是比较容易想到的。

文中详细介绍了思考的过程,想清楚局部最优,想清楚全局最优,感觉局部最优是可以推出全局最优,并想不出反例,那么就试一试贪心
欢迎大家关注本人公众号:编程复盘与思考随笔
(关注后可以免费获得本人在csdn发布的资源源码)

你可能感兴趣的:(贪心算法,leetcode,动态规划,程序人生,c++)