- Yolo-v3利用GPU训练make时发生错误:/usr/bin/ld: cannot find -lcuda
徐小妞66666
一.利用GPU训练Yolov3时,首先要修改MakeFile文件,修改格式如下:GPU=1(原来为0)CUDNN=1(原来为0)NVCC=/usr/local/cuda/bin/nvcc(新建,注意自己本机的地址)二.此时make产生错误/usr/bin/ld:cannotfind-lcuda1.查看MakeFile文件找到该行代码:LDFLAGS+=-L/usr/local/cuda/lib64
- 目标检测-YOLOv3
wydxry
深度学习目标检测YOLO深度学习
YOLOv3介绍YOLOv3(YouOnlyLookOnce,Version3)是YOLO系列目标检测模型的第三个版本,相较于YOLOv2有了显著的改进和增强,尤其在检测速度和精度上表现优异。YOLOv3的设计目标是在保持高速的前提下提升检测的准确性和稳定性。下面是对YOLOv3改进和优势的介绍,以及YOLOv3核心部分的代码展示。相比YOLOv2的改进与优势多尺度特征金字塔YOLOv3引入了FP
- 深度学习框架 人工智能操作系统 训练&前向推理 PyTorch Tensorflow MindSpore caffe 张量加速引擎TBE 深度学习编译器 多面体 polyhedral AI集群框架
EwenWanW
深度学习人工智能pytorch深度学习编译器
深度学习框架人工智能操作系统训练&前向推理深度学习框架发展到今天,目前在架构上大体已经基本上成熟并且逐渐趋同。无论是国外的Tensorflow、PyTorch,亦或是国内最近开源的MegEngine、MindSpore,目前基本上都是支持EagerMode和GraphMode两种模式。AI嵌入式框架OneFlow&清华计图Jittor&华为深度学习框架MindSpore&旷视深度学习框架MegEn
- 目标检测-YOLOv4
wydxry
深度学习目标检测YOLO目标跟踪
YOLOv4介绍YOLOv4是YOLO系列的第四个版本,继承了YOLOv3的高效性,并通过大量优化和改进,在目标检测任务中实现了更高的精度和速度。相比YOLOv3,YOLOv4在框架设计、特征提取、训练策略等方面进行了全面升级。它在保持实时检测的同时,显著提升了检测性能,尤其在复杂场景中的表现尤为出色。相比YOLOv3的改进与优势改进的Backbone(CSPDarknet-53)YOLOv4使用
- Caffeine 与 Guava Cache
雨季里的向日葵
java
一、概要1.1背景在项目开发中,为提升系统性能,减少IO开销,本地缓存是必不可少的。最常见的本地缓存是Guava和Caffeine,Caffeine是基于GoogleGuavaCache设计经验改进的结果,相较于Guava在性能和命中率上更具有效率。1.2应用场景愿意消耗一些内存空间来提升速度预料到某些键会被多次查询缓存中存放的数据总量不会超出内存容量二、GuavaCache2.1GuavaCac
- OSError: [WinError 126] 找不到指定的模块---caffe2_detectron_ops_gpu.dll
努力的小柚
python运行问题pythonpytorch
代码复现记录:问题:OSError:[WinError126]找不到指定的模块。Errorloading"C:\Anaconda\Anaconda3\envs\TIN\lib\site-packages\torch\lib\caffe2_detectron_ops_gpu.dll"oroneofitsdependencies.在搜索很多关于无法查找到caffe2_detectron_ops_gpu
- 来了,YoloV5的TensorFlow版开源
半壶雪
开源自从yolov5开源以来,(不管因为啥原因)深受瞩目,我最近用tensorflow实现了其主要部分。可能是第一个纯正的tensorfow2版本,欢迎tryandstar:github.com/LongxingTan…之前在工作中接触过yolov3(跑过demo应该就算接触过了),效果惊艳。我在视觉领域只是个新人(悲伤的是我一个中年人却在哪儿哪儿都TM是新人),能力有限,疏漏难免。从头开始实现,
- YOLO缺陷检测学习笔记(2)
tt555555555555
YOLO缺陷检测学习笔记YOLO学习笔记
YOLO缺陷检测学习笔记(2)残差连接1.**YOLO的残差连接结构**2.**YOLO使用残差连接的目的**3.**YOLO中的残差块**4.**YOLOv3和YOLOv4的残差连接架构**YOLO网络架构概述1.特征提取网络2.预测头(DetectionHead)3.后处理(Post-processing)YOLOv3/v4的改进YOLOv3YOLOv4SoftmaxSoftmax的性质:So
- caffe/PyTorch/TensorFlow 在Jupyter Notebook GPU中运用
俊俏的萌妹纸
caffe人工智能深度学习
在JupyterNotebook中使用Caffe框架并利用GPU加速,可以实现多种效果和目的,主要集中在深度学习领域。以下是一些主要的应用场景:快速训练模型:GPU加速可以显著提高模型训练的速度。对于大型数据集和复杂的神经网络结构,使用GPU可以大大减少训练时间。实时数据增强:在训练过程中,可以实时地对输入数据进行变换和增强,以提高模型的泛化能力。GPU加速使得这些操作更加高效。大规模数据处理:深
- Linux下Caffe、Docker、Tensorflow、PyTorch环境搭建(CentOS 7)
SnailTyan
文章作者:Tyan博客:noahsnail.com|CSDN|注:模型的训练、测试、部署都可以通过Docker环境完成,环境问题会更少。1.CUDA8.0安装CUDA8.0Configenvvariables#CUDAPATHexportPATH="/usr/local/cuda-8.0/bin:$PATH"#CUDALDLIBRARY_PATHexportLD_LIBRARY_PATH="/us
- DNN学习平台(GoogleNet、SSD、FastRCNN、Yolov3)
吾名招财
人工智能MFC界面应用dnnopencv神经网络
DNN学习平台(GoogleNet、SSD、FastRCNN、Yolov3)前言相关介绍1,登录界面:2,主界面:3,部分功能演示如下(1)识别网络图片(2)GoogleNet分类(3)人脸识别(4)SSD目标检测(5)FasterRCNN目标检测资源链接(含源码)前言 还记得上学那会儿刚学完几个深度学习模型的C++简单部署应用,当时特别兴奋,外加那会儿还能自己写界面生成应用程序了,就想着做一个
- YOLO系列目标检测数据集大全_yolo数据集(1)
2401_84187537
程序员YOLO目标检测人工智能
Darknet版YOLOv4猫狗识别训练好的权重文件:https://download.csdn.net/download/zhiqingAI/85541214Darknet版YOLOv3猫狗识别训练好的权重文件:https://download.csdn.net/download/zhiqingAI/85541209DeepSORT-YOLOv5猫狗检测和跟踪+可视化目标运动轨迹yolov7猫狗
- 目标检测 | yolov8 原理和介绍
hero_hilog
目标检测AIYOLO目标检测
相关系列:目标检测|yolov1原理和介绍目标检测|yolov2/yolo9000原理和介绍目标检测|yolov3原理和介绍目标检测|yolov4原理和介绍目标检测|yolov5原理和介绍目标检测|yolov6原理和介绍目标检测|yolov7原理和介绍目标检测|yolov8原理和介绍目标检测|yolov9原理和介绍目标检测|yolov10原理和介绍IEEE链接:https://ieeexplore
- JVM级缓存本地缓存Caffeine
旺仔爱Java
JVM专题jvmJVM缓存本地缓存CaffeineGuavaCache
JVM级缓存本地缓存Caffeine和GuavaCache前言一、创建缓存的代码逻辑二、Caffeine的优化方面淘汰算法W-TinyLFU三、Caffeine的业务使用总结前言最新的Java面试题,技术栈涉及Java基础、集合、多线程、Mysql、分布式、Spring全家桶、MyBatis、Dubbo、缓存、消息队列、Linux…等等,会持续更新。一、创建缓存的代码逻辑Caffeine:publ
- 【计算机视觉面经四】基于深度学习的目标检测算法面试必备(RCNN~YOLOv5)
旅途中的宽~
计算机视觉面经总结计算机视觉深度学习目标检测YOLORCNN
文章目录一、前言二、两阶段目标检测算法2.1RCNN2.2Fast-RCNN2.3FasterR-CNN三、多阶段目标检测算法3.1CascadeR-CNN四、单阶段目标检测算法4.1编码方式4.1.1基于中心坐标4.1.1.1方案14.1.1.2方案24.1.1.3方案34.2YOLOv14.3SSD4.4YOLOv24.5RetinaNet4.6YOLOv34.7YOLOv44.8YOLOv5
- 面试redis篇-04缓存雪崩
卡搜偶
缓存面试redis
原理缓存雪崩:是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。解决方案:给不同的Key的TTL添加随机值利用Redis集群提高服务的可用性(哨兵模式、集群模式)给缓存业务添加降级限流策略(ngxin或springcloudgateway)给业务添加多级缓存(Guava或Caffeine)问答面试官:什么是缓存雪崩?怎么解决?回答:缓存雪崩意思是设
- 深度学习主流开源框架:Caffe、TensorFlow、Pytorch、Theano、Keras、MXNet、Chainer
seasonsyy
深度学习小知识深度学习开源框架pytorch
2.6深度学习主流开源框架表2.1深度学习主流框架参数对比框架关键词总结框架关键词基本数据结构(都是高维数组)Caffe“在工业中应用较为广泛”,“编译安装麻烦一点”BlobTensorFlow“安装简单pip”TensorPytorch“定位:快速实验研究”,“简单”,“灵活”TensorTheanoד用于处理大规模神经网络的训练”,“不支持移动设备”,“不能应用于工业环境”,“编译复杂模型时
- 深度学习||YOLO(You Only Look Once)深度学习的实时目标检测算法(YOLOv1~YOLOv5)
小嘤嘤怪学
深度学习算法目标检测
目录YOLOv1:YOLOv2:YOLOv3:YOLOv4:YOLOv5:总结:YOLO(YouOnlyLookOnce)是一系列基于深度学习的实时目标检测算法。自从2015年首次被提出以来,YOLO系列不断发展,推出了多个版本,包括YOLOv1,YOLOv2,YOLOv3,YOLOv4,和YOLOv5等。下面是对YOLO系列的详解:YOLOv1:提出时间:2015年。主要贡献:将目标检测任务转换
- 挑战杯 YOLOv7 目标检测网络解读
laafeer
python
文章目录0前言1yolov7的整体结构2关键点-backbone关键点-head3训练4使用效果5最后0前言世界变化太快,YOLOv6还没用熟YOLOv7就来了,如果有同学的毕设项目想用上最新的技术,不妨看看学长的这篇文章,学长带大家简单的解读yolov7,目的是对yolov7有个基础的理解。从2015年的YOLOV1,2016年YOLOV2,2018年的YOLOV3,到2020年的YOLOV4、
- yolov3-tiny
HelloWorldQAQ。
CNN模型介绍自动驾驶深度学习神经网络
文章目录一、目标检测简介二、Yolov3-tiny2.1anchorbox2.2NMS算法三、后记一、目标检测简介针对一张图片,根据后续任务的需要,有三个主要层次。一是分类(Classification),即是将图像结构化为某一类别的信息,用事先确定好的类别或实例ID来描述图片,这一任务是最简单、最基础的图像理解任务,也是深度学习模型最先取得突破和实现大规模应用的任务。其中ImageNet是最权威
- YOLO系列详解(YOLOV1-YOLOV3)
X.AI666
深度学习yolo
YOLO算法简介本文主要介绍YOLO算法,包括YOLOv1、YOLOv2/YOLO9000和YOLOv3。YOLO算法作为one-stage目标检测算法最典型的代表,其基于深度神经网络进行对象的识别和定位,运行速度很快,可以用于实时系统。了解YOLO是对目标检测算法研究的一个必须步骤。目标检测思路目标检测属于计算机视觉的一个中层任务,该任务可以细化为目标定位与目标识别两个任务,简单来说,找到图片中
- MMsegmentation-随机初始化
SatVision炼金士
mmalb-炼金术python
系列文章目录文章目录系列文章目录前言一、初始化单个模块二、初始化多个模块总结前言mmlab下游分支调用权重随机初始化使用参考mmengine的说明文档mmengine支持模型初始化方法包括:BaseInit,Caffe2XavierInit,ConstantInit,KaimingInit,NormalInit,PretrainedInit,TruncNormalInit,UniformInit,
- AI助力农作物自动采摘,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建作物生产场景下番茄采摘检测计数分析系统
Together_CZ
人工智能YOLO
去年十一那会无意间刷到一个视频展示的就是德国机械收割机非常高效自动化地24小时不间断地在超广阔的土地上采摘各种作物,专家设计出来了很多用于采摘不同农作物的大型机械,看着非常震撼,但是我们国内农业的发展还是相对比较滞后的,小的时候拔草是一个人一列蹲在地里就在那埋头拔草,不知道什么时候才能走到地的尽头,小块的分散的土地太多基本上都是只能人工手工来取收割,大点的连片的土地可以用收割机来收割,不过收割机基
- 解决:源码安装caffe时遇到libcudnn.so: file not recognized问题
Gracie丹妮
参考教程(19条消息)ubuntu16.04下Detectron+caffe2(Pytorch)安装配置过程_张家坎的博客-CSDN博客_caffe2_detectron_ops_gpu.dllhttps://blog.csdn.net/u014236392/article/details/81117287安装caffe2执行sudomakeinstall之后遇到如下问题:/home/Xdn/cu
- 进场 行礼 问候 退场
东方芭蕾Lily
1.当听到响铃声,按编号排队依次进入考场。tips:面带微笑,优雅自信且有礼貌的边看着考试官边跑到准备问好的位置。步伐轻盈像一阵风样,到位置站好一位脚,保持挺拔向上体态。小仙女就是你们。2.行礼问候Examier:(考试官)GillianMccafferyGoodmorning/afternoongirlsGoodmorning/afrernoonmadamorMs.MccafferyQuesti
- 如何用OpenCV加载Yolov5并使用CUDA加速
geekboys
1背景随着Pytorch、TensorFlow等有效的框架被用来深度的学习开发,各种任务的模型也层出不穷。但是大多的部署往往依赖签名的两个框架,需要前面的两个框架大量的库。而且先前的Yolov3和Yolov4有官方直接支持,可以自接加载weights和cfg文件。部署起来相对来说就很简单,但是最新的Yolov5确实基于Pytorch版本的,这使用Opencv部署起来就稍微的麻烦了。可以这时候我们希
- 在C++上如何使用OpenCV头文件是什么_用OpenCV的dnn模块调用yolov3模型
weixin_39785858
前言在实际应用场景,我们用darknet的GPU版本训练自己的数据,得到权值文件,然后我们可以调用训练的好的模型去实现自己的检测项目。一般情况下,我们可以使用opencv的dnn模块去调用yolov3。下面大致讲解一下如何是实现调用。一、环境准备1、编译好darknet的GPU版本。可参考我的文章https://zhuanlan.zhihu.com/p/1343471762、安装好opencv3.
- C++ OpenCV-dnn模块调用模型进行目标检测 (支持CUDA加速)
枸杞叶儿
经验笔记深度学习神经网络
前言OpenCV4.4开始支持YOLOv4模型的调用,需要使用Opencv的DNN模块。编译安装OpenCV和OpenCV-contrib库步骤,点此链接C++OpenCV调用YOLO模型的完整代码点此下载一、模型加载constexprconstchar*darknet_cfg="../face/yolov3-tiny.cfg";//网络文件constexprconstchar*darknet_w
- YOLOv5独家改进:上采样算子 | 超轻量高效动态上采样DySample,效果秒杀CAFFE,助力小目标检测
AI小怪兽
YOLOv5原创自研YOLOcaffe目标检测深度学习人工智能
本文独家改进:一种超轻量高效动态上采样DySample,具有更少的参数、FLOPs,效果秒杀CAFFE和YOLOv5网络中的nn.Upsample在多个数据集下验证能够涨点,尤其在小目标检测领域涨点显著。收录YOLOv5原创自研https://blog.csdn.net/m0_63774211/category_12511931.html全网独家首发创新(原创),适合paper!!!2024年计算
- caffez转ncnn,及环境配置
宁静深远
软件安装
一、安装ncnn1、安装protobuf(a)、gitclonehttps://github.com/google/protobuf(b)、自动生成configure配置文件,运行:./autogen.sh(c)、配置环境:./configure(d)、编译源代码:make(e)、安装:sudomakeinstall(f)、刷新动态库:sudoldconfig2、安装ncnn(a)、mkdirco
- VMware Workstation 11 或者 VMware Player 7安装MAC OS X 10.10 Yosemite
iwindyforest
vmwaremac os10.10workstationplayer
最近尝试了下VMware下安装MacOS 系统,
安装过程中发现网上可供参考的文章都是VMware Workstation 10以下, MacOS X 10.9以下的文章,
只能提供大概的思路, 但是实际安装起来由于版本问题, 走了不少弯路, 所以我尝试写以下总结, 希望能给有兴趣安装OSX的人提供一点帮助。
写在前面的话:
其实安装好后发现, 由于我的th
- 关于《基于模型驱动的B/S在线开发平台》源代码开源的疑虑?
deathwknight
JavaScriptjava框架
本人从学习Java开发到现在已有10年整,从一个要自学 java买成javascript的小菜鸟,成长为只会java和javascript语言的老菜鸟(个人邮箱:
[email protected])
一路走来,跌跌撞撞。用自己的三年多业余时间,瞎搞一个小东西(基于模型驱动的B/S在线开发平台,非MVC框架、非代码生成)。希望与大家一起分享,同时有许些疑虑,希望有人可以交流下
平台
- 如何把maven项目转成web项目
Kai_Ge
mavenMyEclipse
创建Web工程,使用eclipse ee创建maven web工程 1.右键项目,选择Project Facets,点击Convert to faceted from 2.更改Dynamic Web Module的Version为2.5.(3.0为Java7的,Tomcat6不支持). 如果提示错误,可能需要在Java Compiler设置Compiler compl
- 主管???
Array_06
工作
转载:http://www.blogjava.net/fastzch/archive/2010/11/25/339054.html
很久以前跟同事参加的培训,同事整理得很详细,必须得转!
前段时间,公司有组织中高阶主管及其培养干部进行了为期三天的管理训练培训。三天的课程下来,虽然内容较多,因对老师三天来的课程内容深有感触,故借着整理学习心得的机会,将三天来的培训课程做了一个
- python内置函数大全
2002wmj
python
最近一直在看python的document,打算在基础方面重点看一下python的keyword、Build-in Function、Build-in Constants、Build-in Types、Build-in Exception这四个方面,其实在看的时候发现整个《The Python Standard Library》章节都是很不错的,其中描述了很多不错的主题。先把Build-in Fu
- JSP页面通过JQUERY合并行
357029540
JavaScriptjquery
在写程序的过程中我们难免会遇到在页面上合并单元行的情况,如图所示
如果对于会的同学可能很简单,但是对没有思路的同学来说还是比较麻烦的,提供一下用JQUERY实现的参考代码
function mergeCell(){
var trs = $("#table tr");
&nb
- Java基础
冰天百华
java基础
学习函数式编程
package base;
import java.text.DecimalFormat;
public class Main {
public static void main(String[] args) {
// Integer a = 4;
// Double aa = (double)a / 100000;
// Decimal
- unix时间戳相互转换
adminjun
转换unix时间戳
如何在不同编程语言中获取现在的Unix时间戳(Unix timestamp)? Java time JavaScript Math.round(new Date().getTime()/1000)
getTime()返回数值的单位是毫秒 Microsoft .NET / C# epoch = (DateTime.Now.ToUniversalTime().Ticks - 62135
- 作为一个合格程序员该做的事
aijuans
程序员
作为一个合格程序员每天该做的事 1、总结自己一天任务的完成情况 最好的方式是写工作日志,把自己今天完成了什么事情,遇见了什么问题都记录下来,日后翻看好处多多
2、考虑自己明天应该做的主要工作 把明天要做的事情列出来,并按照优先级排列,第二天应该把自己效率最高的时间分配给最重要的工作
3、考虑自己一天工作中失误的地方,并想出避免下一次再犯的方法 出错不要紧,最重
- 由html5视频播放引发的总结
ayaoxinchao
html5视频video
前言
项目中存在视频播放的功能,前期设计是以flash播放器播放视频的。但是现在由于需要兼容苹果的设备,必须采用html5的方式来播放视频。我就出于兴趣对html5播放视频做了简单的了解,不了解不知道,水真是很深。本文所记录的知识一些浅尝辄止的知识,说起来很惭愧。
视频结构
本该直接介绍html5的<video>的,但鉴于本人对视频
- 解决httpclient访问自签名https报javax.net.ssl.SSLHandshakeException: sun.security.validat
bewithme
httpclient
如果你构建了一个https协议的站点,而此站点的安全证书并不是合法的第三方证书颁发机构所签发,那么你用httpclient去访问此站点会报如下错误
javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path bu
- Jedis连接池的入门级使用
bijian1013
redisredis数据库jedis
Jedis连接池操作步骤如下:
a.获取Jedis实例需要从JedisPool中获取;
b.用完Jedis实例需要返还给JedisPool;
c.如果Jedis在使用过程中出错,则也需要还给JedisPool;
packag
- 变与不变
bingyingao
不变变亲情永恒
变与不变
周末骑车转到了五年前租住的小区,曾经最爱吃的西北面馆、江西水饺、手工拉面早已不在,
各种店铺都换了好几茬,这些是变的。
三年前还很流行的一款手机在今天看起来已经落后的不像样子。
三年前还运行的好好的一家公司,今天也已经不复存在。
一座座高楼拔地而起,
- 【Scala十】Scala核心四:集合框架之List
bit1129
scala
Spark的RDD作为一个分布式不可变的数据集合,它提供的转换操作,很多是借鉴于Scala的集合框架提供的一些函数,因此,有必要对Scala的集合进行详细的了解
1. 泛型集合都是协变的,对于List而言,如果B是A的子类,那么List[B]也是List[A]的子类,即可以把List[B]的实例赋值给List[A]变量
2. 给变量赋值(注意val关键字,a,b
- Nested Functions in C
bookjovi
cclosure
Nested Functions 又称closure,属于functional language中的概念,一直以为C中是不支持closure的,现在看来我错了,不过C标准中是不支持的,而GCC支持。
既然GCC支持了closure,那么 lexical scoping自然也支持了,同时在C中label也是可以在nested functions中自由跳转的
- Java-Collections Framework学习与总结-WeakHashMap
BrokenDreams
Collections
总结这个类之前,首先看一下Java引用的相关知识。Java的引用分为四种:强引用、软引用、弱引用和虚引用。
强引用:就是常见的代码中的引用,如Object o = new Object();存在强引用的对象不会被垃圾收集
- 读《研磨设计模式》-代码笔记-解释器模式-Interpret
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 解释器(Interpreter)模式的意图是可以按照自己定义的组合规则集合来组合可执行对象
*
* 代码示例实现XML里面1.读取单个元素的值 2.读取单个属性的值
* 多
- After Effects操作&快捷键
cherishLC
After Effects
1、快捷键官方文档
中文版:https://helpx.adobe.com/cn/after-effects/using/keyboard-shortcuts-reference.html
英文版:https://helpx.adobe.com/after-effects/using/keyboard-shortcuts-reference.html
2、常用快捷键
- Maven 常用命令
crabdave
maven
Maven 常用命令
mvn archetype:generate
mvn install
mvn clean
mvn clean complie
mvn clean test
mvn clean install
mvn clean package
mvn test
mvn package
mvn site
mvn dependency:res
- shell bad substitution
daizj
shell脚本
#!/bin/sh
/data/script/common/run_cmd.exp 192.168.13.168 "impala-shell -islave4 -q 'insert OVERWRITE table imeis.${tableName} select ${selectFields}, ds, fnv_hash(concat(cast(ds as string), im
- Java SE 第二讲(原生数据类型 Primitive Data Type)
dcj3sjt126com
java
Java SE 第二讲:
1. Windows: notepad, editplus, ultraedit, gvim
Linux: vi, vim, gedit
2. Java 中的数据类型分为两大类:
1)原生数据类型 (Primitive Data Type)
2)引用类型(对象类型) (R
- CGridView中实现批量删除
dcj3sjt126com
PHPyii
1,CGridView中的columns添加
array(
'selectableRows' => 2,
'footer' => '<button type="button" onclick="GetCheckbox();" style=&
- Java中泛型的各种使用
dyy_gusi
java泛型
Java中的泛型的使用:1.普通的泛型使用
在使用类的时候后面的<>中的类型就是我们确定的类型。
public class MyClass1<T> {//此处定义的泛型是T
private T var;
public T getVar() {
return var;
}
public void setVa
- Web开发技术十年发展历程
gcq511120594
Web浏览器数据挖掘
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- openSession()与getCurrentSession()区别:
hetongfei
javaDAOHibernate
来自 http://blog.csdn.net/dy511/article/details/6166134
1.getCurrentSession创建的session会和绑定到当前线程,而openSession不会。
2. getCurrentSession创建的线程会在事务回滚或事物提交后自动关闭,而openSession必须手动关闭。
这里getCurrentSession本地事务(本地
- 第一章 安装Nginx+Lua开发环境
jinnianshilongnian
nginxluaopenresty
首先我们选择使用OpenResty,其是由Nginx核心加很多第三方模块组成,其最大的亮点是默认集成了Lua开发环境,使得Nginx可以作为一个Web Server使用。借助于Nginx的事件驱动模型和非阻塞IO,可以实现高性能的Web应用程序。而且OpenResty提供了大量组件如Mysql、Redis、Memcached等等,使在Nginx上开发Web应用更方便更简单。目前在京东如实时价格、秒
- HSQLDB In-Process方式访问内存数据库
liyonghui160com
HSQLDB一大特色就是能够在内存中建立数据库,当然它也能将这些内存数据库保存到文件中以便实现真正的持久化。
先睹为快!
下面是一个In-Process方式访问内存数据库的代码示例:
下面代码需要引入hsqldb.jar包 (hsqldb-2.2.8)
import java.s
- Java线程的5个使用技巧
pda158
java数据结构
Java线程有哪些不太为人所知的技巧与用法? 萝卜白菜各有所爱。像我就喜欢Java。学无止境,这也是我喜欢它的一个原因。日常
工作中你所用到的工具,通常都有些你从来没有了解过的东西,比方说某个方法或者是一些有趣的用法。比如说线程。没错,就是线程。或者确切说是Thread这个类。当我们在构建高可扩展性系统的时候,通常会面临各种各样的并发编程的问题,不过我们现在所要讲的可能会略有不同。
- 开发资源大整合:编程语言篇——JavaScript(1)
shoothao
JavaScript
概述:本系列的资源整合来自于github中各个领域的大牛,来收藏你感兴趣的东西吧。
程序包管理器
管理javascript库并提供对这些库的快速使用与打包的服务。
Bower - 用于web的程序包管理。
component - 用于客户端的程序包管理,构建更好的web应用程序。
spm - 全新的静态的文件包管
- 避免使用终结函数
vahoa.ma
javajvmC++
终结函数(finalizer)通常是不可预测的,常常也是很危险的,一般情况下不是必要的。使用终结函数会导致不稳定的行为、更差的性能,以及带来移植性问题。不要把终结函数当做C++中的析构函数(destructors)的对应物。
我自己总结了一下这一条的综合性结论是这样的:
1)在涉及使用资源,使用完毕后要释放资源的情形下,首先要用一个显示的方