约定求和、Kronecker符号和Levi-Civita符号
- 约定求和、Kronecker符号和Levi-Civita符号
-
- 1. 向量的计算
-
- 1.1 向量表示
- 1.2 向量积
- 1.3 向量叉乘
- 2. 求和约定
- 3. Kronecker符号
- 4. Kronecker符号的性质
-
- 4.1 对于欧式空间 R 3 R^3 R3上的标准正交基 e 1 ⃗ , e 2 ⃗ , e 3 ⃗ \vec{e_1},\vec{e_2}, \vec{e_3} e1 ,e2 ,e3 满足右手定则,有:
- 4.2 单位矩阵 I ⃗ \vec{I} I :
- 4.3 有:
- 4.4 对于某一个基向量 e i ⃗ \vec{e_i} ei 有:
- 4.5 对称的有 δ i j = δ j i \delta_{ij} = \delta_{ji} δij=δji
- 5. Levi-Cevita符号
-
- 5.1 Levi-Cevita符号的定义
- 5.2 Levi-Cevita符号的性质
- 参考
约定求和、Kronecker符号和Levi-Civita符号
1. 向量的计算
1.1 向量表示
a ⃗ = a 1 e 1 ⃗ + a 2 e 2 ⃗ + a 3 e 3 ⃗ \vec{a} = a_1\vec{e_1} + a_2\vec{e_2} + a_3\vec{e_3} a =a1e1 +a2e2 +a3e3
1.2 向量积
a ⃗ ⋅ b ⃗ = a 1 b 1 + a 2 b 2 + a 3 b 3 \vec{a}\cdot\vec{b} = a_1b_1+a_2b_2+a_3b_3 a ⋅b =a1b1+a2b2+a3b3
1.3 向量叉乘
a ⃗ × b ⃗ = ( a 2 b 3 − a 3 b 2 a 3 b 1 − a 1 b 3 a 1 b 2 − a 2 b 1 ) \vec{a}\times \vec{b} = \left( \begin{aligned} a_2b_3 - a_3b_2\\a_3b_1 - a_1b_3\\a_1b_2-a_2b_1 \end{aligned}\right) a ×b =⎝⎜⎛a2b3−a3b2a3b1−a1b3a1b2−a2b1⎠⎟⎞
2. 求和约定
对于 ∑ i = 1 i a i b i \sum^{i}_{i=1}{a_ib_i} ∑i=1iaibi的求和公式,复杂表达式求和符号表示不方便,因此约定:
- 当 a i b i a_ib_i aibi下标相同时,不写 Σ \Sigma Σ符号,自动表示求和;
- 只有同一项中出现重复指标时自动求和,只能重复出现两次否则错误,重复出现的为哑指标,出现一次的为自由指标;
- 和式相乘指标不能相同。 ∑ i a i b i ∑ j c j d j \sum_i{a_i}{b_i}\sum_j{c_j}{d_j} ∑iaibi∑jcjdj,相乘时候,指标不同可以表示更加清楚的独立性,对爱因斯坦求和表达有好处,上式可以写成 a i b i c j d j a_ib_ic_jd_j aibicjdj.
3. Kronecker符号
向量点积用爱因斯坦求和表示为:
a ⃗ ⋅ b ⃗ = a i b i \vec{a}\cdot\vec{b} = a_ib_i a ⋅b =aibi
而 a i b i a_ib_i aibi 和更一般的 a i b j a_ib_j aibj(其中 i , j i,j i,j都表示三维情况取1到3整数)有什么关系呢。
- Kronecker函数定义
δ i j = { 0 i ≠ j 1 i = j \delta_{ij} = \begin{cases} 0 & i\neq j\\1 & i = j\end{cases} δij={01i=ji=j
因此:
∑ i = 1 i a i b i = a i b i = δ i j a i b j \sum^i_{i=1}{a_ib_i} = a_ib_i = \delta_{ij}a_ib_j i=1∑iaibi=aibi=δijaibj
Kronecker符号可以表示一个2x2单位矩阵的所有元素,有了kronecker符号可以方便地表示点积。
4. Kronecker符号的性质
4.1 对于欧式空间 R 3 R^3 R3上的标准正交基 e 1 ⃗ , e 2 ⃗ , e 3 ⃗ \vec{e_1},\vec{e_2}, \vec{e_3} e1 ,e2 ,e3 满足右手定则,有:
δ i j = e i ⃗ ⋅ e j ⃗ \delta_{ij} = \vec{e_i}\cdot\vec{e_j} δij=ei ⋅ej
4.2 单位矩阵 I ⃗ \vec{I} I :
I ⃗ = ( δ 11 δ 12 δ 13 δ 21 δ 22 δ 23 δ 31 δ 32 δ 33 ) \vec{I} = \left(\begin{matrix} \delta_{11} & \delta_{12} & \delta_{13}\\ \delta_{21} & \delta_{22} & \delta_{23}\\ \delta_{31} & \delta_{32} & \delta_{33}\\ \end{matrix}\right) I =⎝⎛δ11δ21δ31δ12δ22δ32δ13δ23δ33⎠⎞
4.3 有:
δ i m δ m j = δ i j \delta_{im}\delta_{mj} = \delta_{ij} δimδmj=δij
因为上式展开:
δ i m δ m j = δ i 1 δ 1 j + δ i 2 δ 2 j + δ i 3 δ 3 j \begin{aligned} \delta_{im}\delta_{mj} = \delta_{i1}\delta_{1j}+\delta_{i2}\delta_{2j}+\delta_{i3}\delta_{3j}\\ \end{aligned} δimδmj=δi1δ1j+δi2δ2j+δi3δ3j
上式只有在 i , j i,j i,j值相同时才不为0,同时等于1,或者2,或者3的时候才能得到1乘以1的值,结果为1,因此 δ i m δ m j = δ i j \delta_{im}\delta_{mj} = \delta_{ij} δimδmj=δij。
4.4 对于某一个基向量 e i ⃗ \vec{e_i} ei 有:
e i ⃗ = ( δ i 1 δ i 2 δ i 3 ) (1.1) \vec{e_i}=\left(\begin{matrix} \delta_{i1}\\\delta_{i2}\\\delta_{i3} \end{matrix}\right)\tag{{1.1}} ei =⎝⎛δi1δi2δi3⎠⎞(1.1)
上式直接表示了:
( 1 0 0 ) , ( 0 1 0 ) , ( 0 0 1 ) \left(\begin{matrix} 1\\0\\0\end{matrix}\right),\left(\begin{matrix} 0\\1\\0\end{matrix}\right),\left(\begin{matrix} 0\\0\\1\end{matrix}\right) ⎝⎛100⎠⎞,⎝⎛010⎠⎞,⎝⎛001⎠⎞
三个基向量。
4.5 对称的有 δ i j = δ j i \delta_{ij} = \delta_{ji} δij=δji
5. Levi-Cevita符号
5.1 Levi-Cevita符号的定义
对于欧式空间 R 3 R^3 R3上的标准正交基 e 1 ⃗ , e 2 ⃗ , e 3 ⃗ \vec{e_1},\vec{e_2}, \vec{e_3} e1 ,e2 ,e3 满足右手定则,有:
e 1 ⃗ ⋅ e 2 ⃗ = e 3 ⃗ , e 2 ⃗ ⋅ e 3 ⃗ = e 1 ⃗ , e 3 ⃗ ⋅ e 1 ⃗ = e 2 ⃗ , e 3 ⃗ ⋅ e 2 ⃗ = − e 1 ⃗ , e 2 ⃗ ⋅ e 1 ⃗ = − e 3 ⃗ , e 1 ⃗ ⋅ e 3 ⃗ = − e 2 ⃗ e 1 ⃗ ⋅ e 1 ⃗ = e 2 ⃗ ⋅ e 2 ⃗ = e 3 ⃗ ⋅ e 3 ⃗ = 0 (1.2) \vec{e_1}\cdot\vec{e_2}=\vec{e_3}, \vec{e_2}\cdot\vec{e_3}=\vec{e_1}, \vec{e_3}\cdot\vec{e_1}=\vec{e_2},\\ \vec{e_3}\cdot\vec{e_2}=-\vec{e_1}, \vec{e_2}\cdot\vec{e_1}=-\vec{e_3}, \vec{e_1}\cdot\vec{e_3}=-\vec{e_2}\\ \vec{e_1}\cdot\vec{e_1}=\vec{e_2}\cdot\vec{e_2}=\vec{e_3}\cdot\vec{e_3}=0\tag{1.2} e1 ⋅e2 =e3 ,e2 ⋅e3 =e1 ,e3 ⋅e1 =e2 ,e3 ⋅e2 =−e1 ,e2 ⋅e1 =−e3 ,e1 ⋅e3 =−e2 e1 ⋅e1 =e2 ⋅e2 =e3 ⋅e3 =0(1.2)
有了上式,那么向量的叉积可以化简为:
a ⃗ × b ⃗ = ( a 1 e 1 ⃗ + a 2 e 2 ⃗ + a 3 e 3 ⃗ ) × ( b 1 e 1 ⃗ + b 2 e 2 ⃗ + b 3 e 3 ⃗ ) = a 1 b 1 ( e 1 ⃗ × e 1 ⃗ ) + a 1 b 2 ( e 1 ⃗ × e 2 ⃗ ) + a 1 b 3 ( e 1 ⃗ × e 3 ⃗ ) + a 2 b 1 ( e 2 ⃗ × e 1 ⃗ ) + a 2 b 2 ( e 2 ⃗ × e 2 ⃗ ) + a 2 b 3 ( e 2 ⃗ × e 3 ⃗ ) + a 3 b 1 ( e 3 ⃗ × e 1 ⃗ ) + a 3 b 2 ( e 3 ⃗ × e 2 ⃗ ) + a 3 b 3 ( e 3 ⃗ × e 3 ⃗ ) \vec{a}\times\vec{b} = (a_1\vec{e_1}+a_2\vec{e_2}+a_3\vec{e_3})\times(b_1\vec{e_1}+b_2\vec{e_2}+b_3\vec{e_3})\\ =a_1b_1(\vec{e_1}\times\vec{e_1})+a_1b_2(\vec{e_1}\times\vec{e_2})+a_1b_3(\vec{e_1}\times\vec{e_3})\\ +a_2b_1(\vec{e_2}\times\vec{e_1})+a_2b_2(\vec{e_2}\times\vec{e_2})+a_2b_3(\vec{e_2}\times\vec{e_3})\\ +a_3b_1(\vec{e_3}\times\vec{e_1})+a_3b_2(\vec{e_3}\times\vec{e_2})+a_3b_3(\vec{e_3}\times\vec{e_3})\\ a ×b =(a1e1 +a2e2 +a3e3 )×(b1e1 +b2e2 +b3e3 )=a1b1(e1 ×e1 )+a1b2(e1 ×e2 )+a1b3(e1 ×e3 )+a2b1(e2 ×e1 )+a2b2(e2 ×e2 )+a2b3(e2 ×e3 )+a3b1(e3 ×e1 )+a3b2(e3 ×e2 )+a3b3(e3 ×e3 )
代入(1.2)式整理得:
a ⃗ × b ⃗ = ( a 2 b 3 − a 3 b 2 ) e 1 ⃗ − ( a 3 b 1 − a 1 b 3 ) e 2 ⃗ + ( a 1 b 2 − a 2 b 1 ) e 3 ⃗ = ∣ e 1 ⃗ e 2 ⃗ e 3 ⃗ a 1 a 2 a 3 b 1 b 2 b 3 ∣ (1.3) \vec{a}\times\vec{b}=(a_2b_3 - a_3b_2)\vec{e_1}-(a_3b_1 - a_1b_3)\vec{e_2}+(a_1b_2 - a_2b_1)\vec{e_3}\\= \left|\begin{matrix} \vec{e_1}&\vec{e_2}&\vec{e_3}\\ a_1 &a_2 &a_3\\ b_1 &b_2 &b_3 \end{matrix}\right|\tag{1.3} a ×b =(a2b3−a3b2)e1 −(a3b1−a1b3)e2 +(a1b2−a2b1)e3 =∣∣∣∣∣∣e1 a1b1e2 a2b2e3 a3b3∣∣∣∣∣∣(1.3)
式1.3表示的向量叉乘要用爱因斯坦求和表示的话 a 2 b 3 e 1 ⃗ , a 3 b 1 e 2 ⃗ , a 1 b 2 e 3 ⃗ a_2b_3\vec{e_1},a_3b_1\vec{e_2},a_1b_2\vec{e_3} a2b3e1 ,a3b1e2 ,a1b2e3 三项的系数是1,剩下三项的系数是-1.因此为了更加方便地表示( R 3 R^3 R3下)叉乘或者行列式,定义Levi-Cevita符号为:
- Levi-Cevita符号定义
ϵ i j k = { 1 i j k = 123 , 231 , 321 − 1 i j k = 321 , 213 , 132 0 o t h e r (1.4) \epsilon_{ijk} = \begin{cases} 1 & ijk = 123, 231 ,321\\ -1 & ijk = 321, 213, 132\\ 0 & other \end{cases}\tag{1.4} ϵijk=⎩⎪⎨⎪⎧1−10ijk=123,231,321ijk=321,213,132other(1.4)
其中1,2,3顺时针排序轮换时值为1,逆时针轮换时值为-1,其他情况(ijk中至少有两个相同)为0。
有了(1.4),向量叉积可以写成:
c ⃗ = a ⃗ × b ⃗ = ϵ i j k e i ⃗ a j b k (1.5) \vec{c}=\vec{a}\times\vec{b}=\epsilon_{ijk}\vec{e_i}a_jb_k\tag{1.5} c =a ×b =ϵijkei ajbk(1.5)
因此,Levi-Civita符号可以表示为任何标准正交参考系的单位向量的行列式或混合三乘积,即(1.5)中 a ⃗ , b ⃗ \vec{a},\vec{b} a ,b 为与 e k ⃗ \vec{e_k} ek 垂直的单位向量时,有:
ϵ i j k = e i ⃗ ⋅ ( e j ⃗ × e k ⃗ ) \epsilon_{ijk}=\vec{e_i}\cdot(\vec{e_j}\times\vec{e_k}) ϵijk=ei ⋅(ej ×ek )
由(1.1)式可得:
ϵ i j k = e i ⃗ ⋅ ( e j ⃗ × e k ⃗ ) = ∣ δ i 1 δ i 2 δ i 3 δ j 1 δ j 2 δ j 3 δ k 1 δ k 2 δ k 3 ∣ (1.6) \epsilon_{ijk} = \vec{{e_i}}\cdot(\vec{e_j}\times\vec{e_k})=\left|\begin{matrix} \delta_{i1}&\delta_{i2}&\delta_{i3}\\ \delta_{j1}&\delta_{j2}&\delta_{j3}\\ \delta_{k1}&\delta_{k2}&\delta_{k3} \end{matrix}\right|\tag{1.6} ϵijk=ei ⋅(ej ×ek )=∣∣∣∣∣∣δi1δj1δk1δi2δj2δk2δi3δj3δk3∣∣∣∣∣∣(1.6)
5.2 Levi-Cevita符号的性质
- Levi-Civita张量 ϵ i j k \epsilon_{ijk} ϵijk有3×3×3 = 27个分量
- 3×(6 +1)= 21个分量等于0
- 3个分量等于1,三个分量等于-1
- Levi-civita符号和kronecker符号有以下关系:
ϵ i j k ϵ i m n = δ j m δ k n − δ j n δ k m \epsilon_{ijk}\epsilon_{imn}=\delta_{jm}\delta_{kn}-\delta_{jn}\delta_{km} ϵijkϵimn=δjmδkn−δjnδkm
ϵ i j k ϵ l m n = ∣ δ i 1 δ i 2 δ i 3 δ j 1 δ j 2 δ j 3 δ k 1 δ k 2 δ k 3 ∣ ∣ δ l 1 δ l 2 δ l 3 δ m 1 δ m 2 δ m 3 δ n 1 δ n 2 δ n 3 ∣ \displaystyle\epsilon_{ijk}\epsilon_{lmn}= \left|\begin{matrix} \delta_{i1}&\delta_{i2}&\delta_{i3}\\ \delta_{j1}&\delta_{j2}&\delta_{j3}\\ \delta_{k1}&\delta_{k2}&\delta_{k3} \end{matrix}\right|\left|\begin{matrix} \delta_{l1}&\delta_{l2}&\delta_{l3}\\ \delta_{m1}&\delta_{m2}&\delta_{m3}\\ \delta_{n1}&\delta_{n2}&\delta_{n3} \end{matrix}\right|\\ ϵijkϵlmn=∣∣∣∣∣∣δi1δj1δk1δi2δj2δk2δi3δj3δk3∣∣∣∣∣∣∣∣∣∣∣∣δl1δm1δn1δl2δm2δn2δl3δm3δn3∣∣∣∣∣∣
因为矩阵的行列式的积等于矩阵的积的行列式
ϵ i j k ϵ l m n = ∣ [ δ i 1 δ i 2 δ i 3 δ j 1 δ j 2 δ j 3 δ k 1 δ k 2 δ k 3 ] [ δ l 1 δ l 2 δ l 3 δ m 1 δ m 2 δ m 3 δ n 1 δ n 2 δ n 3 ] ∣ = ∣ [ δ i 1 δ i 2 δ i 3 δ j 1 δ j 2 δ j 3 δ k 1 δ k 2 δ k 3 ] [ δ l 1 δ l 2 δ l 3 δ m 1 δ m 2 δ m 3 δ n 1 δ n 2 δ n 3 ] T ∣ = ∣ [ δ i 1 δ i 2 δ i 3 δ j 1 δ j 2 δ j 3 δ k 1 δ k 2 δ k 3 ] [ δ l 1 δ m 1 δ n 1 δ l 2 δ m 2 δ n 2 δ l 3 δ m 3 δ n 3 ] ∣ \displaystyle\epsilon_{ijk}\epsilon_{lmn}=\left|\begin{matrix} \begin{bmatrix} \delta_{i1}&\delta_{i2}&\delta_{i3}\\ \delta_{j1}&\delta_{j2}&\delta_{j3}\\ \delta_{k1}&\delta_{k2}&\delta_{k3} \end{bmatrix} \begin{bmatrix} \delta_{l1}&\delta_{l2}&\delta_{l3}\\ \delta_{m1}&\delta_{m2}&\delta_{m3}\\ \delta_{n1}&\delta_{n2}&\delta_{n3} \end{bmatrix} \end{matrix}\right|\\ \displaystyle=\left|\begin{matrix} \begin{bmatrix} \delta_{i1}&\delta_{i2}&\delta_{i3}\\ \delta_{j1}&\delta_{j2}&\delta_{j3}\\ \delta_{k1}&\delta_{k2}&\delta_{k3} \end{bmatrix} \begin{bmatrix} \delta_{l1}&\delta_{l2}&\delta_{l3}\\ \delta_{m1}&\delta_{m2}&\delta_{m3}\\ \delta_{n1}&\delta_{n2}&\delta_{n3} \end{bmatrix}^T \end{matrix}\right|\\ \displaystyle=\left|\begin{matrix} \begin{bmatrix} \delta_{i1}&\delta_{i2}&\delta_{i3}\\ \delta_{j1}&\delta_{j2}&\delta_{j3}\\ \delta_{k1}&\delta_{k2}&\delta_{k3} \end{bmatrix} \begin{bmatrix} \delta_{l1}&\delta_{m1}&\delta_{n1}\\ \delta_{l2}&\delta_{m2}&\delta_{n2}\\ \delta_{l3}&\delta_{m3}&\delta_{n3} \end{bmatrix} \end{matrix}\right| ϵijkϵlmn=∣∣∣∣∣∣⎣⎡δi1δj1δk1δi2δj2δk2δi3δj3δk3⎦⎤⎣⎡δl1δm1δn1δl2δm2δn2δl3δm3δn3⎦⎤∣∣∣∣∣∣=∣∣∣∣∣∣⎣⎡δi1δj1δk1δi2δj2δk2δi3δj3δk3⎦⎤⎣⎡δl1δm1δn1δl2δm2δn2δl3δm3δn3⎦⎤T∣∣∣∣∣∣=∣∣∣∣∣∣⎣⎡δi1δj1δk1δi2δj2δk2δi3δj3δk3⎦⎤⎣⎡δl1δl2δl3δm1δm2δm3δn1δn2δn3⎦⎤∣∣∣∣∣∣
对于乘积的行列式(1,1)位置上:
∵ ( δ i 1 , δ i 2 , δ i 3 ) ⋅ ( δ l 1 , δ l 2 , δ l 3 ) T = δ i 1 δ 1 l + δ i 2 δ 2 l + δ i 3 δ 3 l = δ i p δ p l = δ i l ⇒ ϵ i j k ϵ l m n = ∣ δ i l δ i m δ i n δ j l δ j m δ j n δ k l δ k m δ k n ∣ = δ i l ( δ j m δ k n − δ j n δ k m ) − δ i m ( δ j l δ k n − δ j n δ k l ) + δ i n ( δ j l δ k m − δ j m δ k l ) = δ i l δ j m δ k n + δ i m δ j n δ k l + δ i n δ j l δ k m − δ i l δ j n δ k m − δ i m δ j l δ k n − δ i n δ j m δ k l (1.7) \begin{aligned} \because(\delta_{i1},\delta_{i2},\delta_{i3})\cdot(\delta_{l1},\delta_{l2},\delta_{l3})^T&=\delta_{i1}\delta_{1l}+\delta_{i2}\delta_{2l}+\delta_{i3}\delta_{3l}=\delta_{ip}\delta_{pl}=\delta_{il}\Rightarrow\\ \displaystyle\epsilon_{ijk}\epsilon_{lmn}&= \left|\begin{matrix} \delta_{il}&\delta_{im}&\delta_{in}\\ \delta_{jl}&\delta_{jm}&\delta_{jn}\\ \delta_{kl}&\delta_{km}&\delta_{kn} \end{matrix}\right|\\=\delta_{il}(\delta_{jm}\delta_{kn}&-\delta_{jn}\delta_{km})-\delta_{im}(\delta_{jl}\delta_{kn}-\delta_{jn}\delta_{kl})+\delta_{in}(\delta_{jl}\delta_{km}-\delta_{jm}\delta_{kl})\\ =\delta_{il}\delta_{jm}\delta_{kn}+&\delta_{im}\delta_{jn}\delta_{kl}+\delta_{in}\delta_{jl}\delta_{km}\\ -\delta_{il}\delta_{jn}\delta_{km}-&\delta_{im}\delta_{jl}\delta_{kn}-\delta_{in}\delta_{jm}\delta_{kl}\tag{1.7} \end{aligned} ∵(δi1,δi2,δi3)⋅(δl1,δl2,δl3)Tϵijkϵlmn=δil(δjmδkn=δilδjmδkn+−δilδjnδkm−=δi1δ1l+δi2δ2l+δi3δ3l=δipδpl=δil⇒=∣∣∣∣∣∣δilδjlδklδimδjmδkmδinδjnδkn∣∣∣∣∣∣−δjnδkm)−δim(δjlδkn−δjnδkl)+δin(δjlδkm−δjmδkl)δimδjnδkl+δinδjlδkmδimδjlδkn−δinδjmδkl(1.7)
- 对于 ϵ j i k ϵ l m n \epsilon_{jik}\epsilon_{lmn} ϵjikϵlmn,令 i = l i=l i=l,则有:
ϵ i j k ϵ i m n = δ j m δ k n − δ j n δ k m (1.8) \epsilon_{ijk}\epsilon_{imn}=\delta_{jm}\delta_{kn}-\delta_{jn}\delta_{km}\tag{1.8} ϵijkϵimn=δjmδkn−δjnδkm(1.8)
证明:
由(1.7)式,有:
ϵ i j k ϵ i m n = δ i i ( δ j m δ k n − δ j n δ k m ) + δ i m δ k i δ j n + δ i n δ j i δ k m − δ i m δ j i δ k n − δ i n δ j m δ k i = 3 ( δ j m δ k n − δ j n δ k m ) + 2 δ k m δ j n − 2 δ j m δ k n = δ j m δ k n − δ j n δ k m (1.9) \begin{aligned} \epsilon_{ijk}\epsilon_{imn}&=\delta_{ii}(\delta_{jm}\delta_{kn}-\delta_{jn}\delta_{km})+\delta_{im}\delta_{ki}\delta_{jn}+\delta_{in}\delta_{ji}\delta_{km}-\delta_{im}\delta_{ji}\delta_{kn}-\delta_{in}\delta_{jm}\delta_{ki}\\ &=3(\delta_{jm}\delta_{kn}-\delta_{jn}\delta_{km})+2\delta_{km}\delta_{jn}-2\delta_{jm}\delta_{kn}\\ &=\delta_{jm}\delta_{kn}-\delta_{jn}\delta_{km}\tag{1.9} \end{aligned} ϵijkϵimn=δii(δjmδkn−δjnδkm)+δimδkiδjn+δinδjiδkm−δimδjiδkn−δinδjmδki=3(δjmδkn−δjnδkm)+2δkmδjn−2δjmδkn=δjmδkn−δjnδkm(1.9)
- 对于 ϵ j i k ϵ l m n \epsilon_{jik}\epsilon_{lmn} ϵjikϵlmn,令 i = l , j = m i=l,j=m i=l,j=m,由(1.9)式则有:
ϵ i j k ϵ i j n = δ j j δ k n − δ j n δ k j = 3 δ k n − δ k n = 2 δ k n (1.10) \begin{aligned} \epsilon_{ijk}\epsilon_{ijn}&=\delta_{jj}\delta_{kn}-\delta_{jn}\delta_{kj}\\ &=3\delta_{kn}-\delta_{kn}\\ &=2\delta_{kn}\tag{1.10} \end{aligned} ϵijkϵijn=δjjδkn−δjnδkj=3δkn−δkn=2δkn(1.10)
- 对于 ϵ j i k ϵ l m n \epsilon_{jik}\epsilon_{lmn} ϵjikϵlmn,令 i = l , j = m , k = n i=l,j=m,k=n i=l,j=m,k=n,由(1.10)式则有:
ϵ i j k ϵ i j k = 2 δ k k = 6 (1.11) \epsilon_{ijk}\epsilon_{ijk}=2\delta_{kk}=6\tag{1.11} ϵijkϵijk=2δkk=6(1.11)
由此可以总结关于Levi-Civita符号的三个重要等式:
ϵ i j k ϵ i m n = δ j m δ k n − δ j n δ k m ϵ i j k ϵ i j n = 2 δ k n ϵ i j k ϵ i j k = 6 \begin{aligned} \epsilon_{ijk}\epsilon_{imn}&=\delta_{jm}\delta_{kn}-\delta_{jn}\delta_{km}\\ \epsilon_{ijk}\epsilon_{ijn}&=2\delta_{kn}\\ \epsilon_{ijk}\epsilon_{ijk}&=6 \end{aligned} ϵijkϵimnϵijkϵijnϵijkϵijk=δjmδkn−δjnδkm=2δkn=6
参考
[1] Levi-Civita symbol and cross product vector/tensor
[2] 矢量分析(进阶版)