PyTorch实现基本的线性回归

线性回归理论知识参考文章:线性回归

下面我们将从零开始实现整个线性回归方法, 包括数据集生成、模型、损失函数和小批量随机梯度下降优化器。

1.导入

%matplotlib inline
import random
import torch
from d2l import torch as d2l

2.生成数据集

我们将生成一个包含1000个样本的数据集, 每个样本包含从标准正态分布中采样的2个特征。我们的合成数据集是一个矩阵 X ∈ R 1000 × 2 \mathbf{X}\in \mathbb{R}^{1000 \times 2} XR1000×2
使用线性模型参数 w = [ 2 , − 3.4 ] ⊤ \mathbf{w} = [2, -3.4]^\top w=[2,3.4] b = 4.2 b = 4.2 b=4.2和噪声项 ϵ \epsilon ϵ生成数据集及其标签: y = X w + b + ϵ . \mathbf{y}= \mathbf{X} \mathbf{w} + b + \mathbf\epsilon. y=Xw+b+ϵ.
ϵ \epsilon ϵ可以视为模型预测和标签时的潜在观测误差。在这里我们认为标准假设成立,即 ϵ \epsilon ϵ服从均值为0的正态分布。为了简化问题,我们将标准差设为0.01。

def synthetic_data(w, b, num_examples):  #@save
    """生成y=Xw+b+噪声"""
    X = torch.normal(0, 1, (num_examples, len(w)))  #该函数返回从单独的正态分布中提取的随机数的张量 normal(mean, std, size)
    y = torch.matmul(X, w) + b
    y += torch.normal(0, 0.01, y.shape)
    return X, y.reshape((-1, 1))

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)

features中的每一行都包含一个二维数据样本, labels中的每一行都包含一维标签值(一个标量)
通过生成第二个特征features[:, 1]和labels的散点图, 可以直观观察到两者之间的线性关系。

d2l.set_figsize()
d2l.plt.scatter(features[:, 1].detach().numpy(), labels.detach().numpy(), 1);

PyTorch实现基本的线性回归_第1张图片

3.读取数据集

训练模型时要对数据集进行遍历,每次抽取一小批量样本,并使用它们来更新我们的模型。 由于这个过程是训练机器学习算法的基础,所以有必要定义一个函数, 该函数能打乱数据集中的样本并以小批量方式获取数据。
定义一个data_iter函数, 该函数接收批量大小、特征矩阵和标签向量作为输入,生成大小为batch_size的小批量。 每个小批量包含一组特征和标签。

def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))  # 生成下标
    # 这些样本是随机读取的,没有特定的顺序
    random.shuffle(indices)  # 把下标随机打乱,用随机的顺序访问样本 
    for i in range(0, num_examples, batch_size):
        batch_indices = torch.tensor(
            indices[i: min(i + batch_size, num_examples)]) # 得到batch_size大小个的随机下标
        yield features[batch_indices], labels[batch_indices]   # torch.Tensor 张量的下标可以是一个数组

当我们运行迭代时,我们会连续地获得不同的小批量,直至遍历完整个数据集。

4.初始化模型参数

通过从均值为0、标准差为0.01的正态分布中采样随机数来初始化权重, 并将偏置初始化为0。

w = torch.normal(0, 0.01, size=(2,1), requires_grad=True) # pytorch自动计算梯度
b = torch.zeros(1, requires_grad=True)

在初始化参数之后,我们的任务是更新这些参数,直到这些参数足够拟合我们的数据。 每次更新都需要计算损失函数关于模型参数的梯度。 有了这个梯度,我们就可以向减小损失的方向更新每个参数。 因为手动计算梯度很枯燥而且容易出错,所以没有人会手动计算梯度。

5.定义模型

def linreg(X, w, b):  #@save
    """线性回归模型"""
    return torch.matmul(X, w) + b # 广播机制

6.损失函数

def squared_loss(y_hat, y):  #@save
    """均方损失"""
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

7.优化算法

在每一步中,使用从数据集中随机抽取的一个小批量,然后根据参数计算损失的梯度。 接下来,朝着减少损失的方向更新我们的参数。 下面的函数实现小批量随机梯度下降更新。 该函数接受模型参数集合、学习速率和批量大小作为输入。每 一步更新的大小由学习速率lr决定。 因为我们计算的损失是一个批量样本的总和,所以我们用批量大小(batch_size) 来规范化步长,这样步长大小就不会取决于我们对批量大小的选择。

def sgd(params, lr, batch_size):  #@save
    """小批量随机梯度下降"""
    with torch.no_grad():
        #torch.no_grad上一个上下文管理器,在你确定不需要调用Tensor.backward()时
        #可以用torch.no_grad来屏蔽梯度计算
        #在被torch.no_grad管控下计算得到的tensor,它的requires_grad就是False
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()  # 梯度清零

8.训练

在每个迭代周期(epoch)中,我们使用data_iter函数遍历整个数据集, 并将训练数据集中所有样本都使用一次(假设样本数能够被批量大小整除)。 这里的迭代周期个数num_epochs和学习率lr都是超参数,分别设为3和0.03。 设置超参数很棘手,需要通过反复试验进行调整。

lr = 0.03  # 可以尝试不同的学习率
num_epochs = 3
net = linreg   # 定义模型
loss = squared_loss   # 定义损失

for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()
        sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数
    with torch.no_grad():
        train_l = loss(net(features, w, b), labels)  # 用更新过的参数计算损失
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')

PyTorch实现基本的线性回归_第2张图片

你可能感兴趣的:(机器学习,pytorch,线性回归,python)