泛函分析中的向量空间

一、向量空间背景

(1) 具有如下点内积或标量内积的实数域 R R R上的欧式空间 R N R^N RN
⟨ u , v ⟩ = u T v = u 0 v 0 + u 1 v 1 + ⋯ + u N − 1 v N − 1 = ∑ i = 0 N − 1 u i v i \langle\boldsymbol{u}, \boldsymbol{v}\rangle=\boldsymbol{u}^{\mathrm{T}} \boldsymbol{v}=u_{0} v_{0}+u_{1} v_{1}+\cdots+u_{N-1} v_{N-1}=\sum_{i=0}^{N-1} u_{i} v_{i} u,v=uTv=u0v0+u1v1++uN1vN1=i=0N1uivi

其中, u \boldsymbol{u} u v \boldsymbol{v} v N × 1 N \times 1 N×1列向量。

(2) 具有如下内积函数的复数域 C C C上的酉空间(unitary linear space C N C^N CN

⟨ u , v ⟩ = u ∗   T v = ∑ i = 0 N − 1 u i ∗ v i = < v , u > ∗ \langle\boldsymbol{u}, \boldsymbol{v}\rangle=\boldsymbol{u}^{* \mathrm{~T}} \boldsymbol{v}=\sum_{i=0}^{N-1} u_{i}^{*} v_{i}=<\boldsymbol{v}, \boldsymbol{u}>^{*} u,v=u Tv=i=0N1uivi=<v,u>
(3) 内积空间 C ( [ a , b ] ) C([a, b]) C([a,b]), 其中向量是区间 a ≤ x ≤ b a≤x≤b axb上的连续函数, 内积函数是积分内积:

< f ( x ) , g ( x ) > = ∫ a b f ∗ ( x ) g ( x ) d x =\int_{a}^{b} f^{*}(x) g(x) \mathrm{d} x <f(x),g(x)>=abf(x)g(x)dx

向量 z z z的范数或长度为:
∥ z ∥ = ⟨ z , z ⟩ \|\boldsymbol{z}\|=\sqrt{\langle\boldsymbol{z}, \boldsymbol{z}\rangle} z=z,z

z z z的范数是1, 则称 z z z归一化的。

两个非零向量z和w之间的夹角为:
θ = arccos ⁡ ⟨ z , w ⟩ ∥ z ∥ ∥ w ∥ \theta=\arccos \frac{\left \langle\boldsymbol{z}, \boldsymbol{w} \right\rangle }{\|\boldsymbol{z}\|\|\boldsymbol{w}\|} θ=arccosz∥∥wz,w
⟨ z , w ⟩ = 0 \left \langle\boldsymbol{z}, \boldsymbol{w}\right\rangle=0 z,w=0,则称 z z z w w w正交的(orthogonal)。即当且仅当
< w k , w l > = 0 , k ≠ l <\boldsymbol{w}_{k}, \boldsymbol{w}_{l}>=0, \quad k \neq l <wk,wl>=0,k=l

时, 非零向量 w 0 , w 1 , w 2 , ⋯ w_{0}, w_{1}, w_{2}, \cdots w0,w1,w2,是所张成内积空间的正交基。若基向量是归一化的,则它们是一个正交基,并且有
⟨ w k , w l ⟩ = δ k l = { 0 , k ≠ l 1 , k = l \left\langle\boldsymbol{w}_{k}, \boldsymbol{w}_{l}\right\rangle=\delta_{k l}=\left\{\begin{array}{l} 0, k \neq l \\ 1, k=l \end{array}\right. wk,wl=δkl={0,k=l1,k=l
类似地, 若
< w ~ k , w l > = 0 , k ≠ l <\tilde{\boldsymbol{w}}_{k}, \boldsymbol{w}_{l}>=0, k \neq l <w~k,wl>=0,k=l
则称向量集合 w 0 , w 1 , w 2 , ⋯ \boldsymbol{w}_{0}, \boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots w0,w1,w2,和对偶向量补集 w ~ 0 , w ~ 1 , w ~ 2 , ⋯ \tilde{\boldsymbol{w}}_{0},\tilde{\boldsymbol{w}}_{1}, \tilde{\boldsymbol{w}}_{2}, \cdots w~0,w~1,w~2,是双正交的,并且是所张成向量空间的一个双正交基。 当且仅当

< w ~ k , w l > = δ k l = { 0 , k ≠ l 1 , k = l <\tilde{\boldsymbol{w}}_{k}, \boldsymbol{w}_{l}>=\delta_{k l}=\left\{\begin{array}{l} 0, k \neq l \\ 1, k=l \end{array}\right. <w~k,wl>=δkl={0,k=l1,k=l
时, 它们才是双规范正交基。

W = { w 0 , w 1 , w 2 , ⋯   } W=\left\{\boldsymbol{w}_{0}, \boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots\right\} W={w0,w1,w2,}是内积空间 V V V的一个正交基,并且令 z ∈ V z\in V zV,则向量 z z z可 表示为基向量的线性组合:
z = α 0 w 0 + α 1 w 1 + α 2 w 2 + ⋯ \boldsymbol{z}=\alpha_{0} \boldsymbol{w}_{0}+\alpha_{1} \boldsymbol{w}_{1}+\alpha_{2} \boldsymbol{w}_{2}+\cdots z=α0w0+α1w1+α2w2+

计算得:
α i = ⟨ w i , z ⟩ ⟨ w i , w i ⟩ \alpha_{i}=\frac{\left\langle\boldsymbol{w}_{i}, \boldsymbol{z}\right\rangle}{\left\langle\boldsymbol{w}_{i}, \boldsymbol{w}_{i}\right\rangle} αi=wi,wiwi,z
若基向量的范数为1, 则简化为: α i = < w i , z > \alpha_{i}=<\boldsymbol{w}_{i}, \boldsymbol{z}> αi=<wi,z>

二、基于矩阵的变换

一维离散傅里叶变换是一类重要的变换, 这类变换可用如下通式表示:
T ( u ) = ∑ x = 0 N − 1 f ( x ) r ( x , u ) (16) T(u)=\sum_{x=0}^{N-1} f(x) r(x, u)\tag{16} T(u)=x=0N1f(x)r(x,u)(16)
其中, x x x是空间变量; T ( u ) T(u) T(u) f ( x ) f(x) f(x)的变换; r ( x , u ) r(x,u) r(x,u)是正变换核;整数 u u u是变换变量, 其值域为 0 , 1 , 2 , ⋯   , N − 1 0,1,2,\cdots,N-1 0,1,2,,N1

T ( u ) T(u) T(u)的反变换:
f ( x ) = ∑ u = 0 N − 1 T ( u ) s ( x , u ) (17) f(x)=\sum_{u=0}^{N-1} T(u)s(x,u)\tag{17} f(x)=u=0N1T(u)s(x,u)(17)
其中, s ( x , u ) s(x,u) s(x,u)是反变换核, x的值域为 0 , 1 , 2 , ⋯   , N − 1 0,1,2,\cdots,N-1 0,1,2,,N1 f ( x ) f(x) f(x)是N个反变换核的加权和, T ( u ) T(u) T(u)是权重。
展开式 ( 17 ) (17) (17)右侧得到:
f ( x ) = T ( 0 ) s ( x , 0 ) + T ( 1 ) s ( x , 1 ) + ⋯ + T ( N − 1 ) s ( x , N − 1 ) (18) f(x)=T(0) s(x, 0)+T(1) s(x, 1)+\cdots+T(N-1) s(x, N-1)\tag{18} f(x)=T(0)s(x,0)+T(1)s(x,1)++T(N1)s(x,N1)(18)
泛函分析中的向量空间_第1张图片
假设式 ( 17 ) (17) (17)中的s(x, u)是内积空间的正交基向量,且基向量的范数为1,则:
T ( u ) = ⟨ s ( x , u ) , f ( x ) ⟩ (19) T(u)=\left \langle s(x,u),f(x) \right \rangle \tag{19} T(u)=s(x,u),f(x)(19)

即变换的每个元素 T ( u ) T(u) T(u), 可通过内积来计算。

现在准备利用矩阵来表达式 ( 16 ) (16) (16)和式 ( 17 ) (17) (17)。首先将函数 f ( x ) f(x) f(x) T ( u ) T(u) T(u) s ( x , u ) s(x, u) s(x,u)定义为列向量:
f = [ f ( 0 ) f ( 1 ) ⋯ f ( N − 1 ) ] T = [ f 0 f 1 ⋯ f N − 1 ] T (20) \boldsymbol{f}=\left[\begin{array}{lll} f(0) & f(1) \cdots f(N-1) \end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll} f_{0} & f_{1} \cdots & f_{N-1} \end{array}\right]^{\mathrm{T}}\tag{20} f=[f(0)f(1)f(N1)]T=[f0f1fN1]T(20)
t = [ T ( 0 ) T ( 1 ) ⋯ T ( N − 1 ) ] T = [ t 0 t 1 ⋯ t N − 1 ] T (21) \boldsymbol{t}=\left[\begin{array}{lll} T(0) & T(1) \cdots T(N-1) \end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll} t_{0} & t_{1} \cdots & t_{N-1} \end{array}\right]^{\mathrm{T}}\tag{21} t=[T(0)T(1)T(N1)]T=[t0t1tN1]T(21)

s u = [ s ( 0 , u ) s ( 1 , u ) ⋯ s ( N − 1 , u ) ] T = [ s u , 0 s u , 1 ⋯ s u , N − 1 ] T   s_{u}=[s(0, u)\quad s(1, u) \cdots s(N-1, u)]^{\mathrm{T}}=\left[s_{u, 0}\quad s_{u, 1} \cdots s_{u, N-1}\right]^{\mathrm{T}}\ su=[s(0,u)s(1,u)s(N1,u)]T=[su,0su,1su,N1]T 

其中, u = 0 , 1 , ⋯   , N − 1 u=0,1, \cdots, N-1 u=0,1,,N1
利用这些列向量, 重写式 ( 19 ) (19) (19), 得:
T ( u ) = < s u , f > , u = 0 , 1 , ⋯   , N − 1 (23) T(u)=, \quad u=0,1, \cdots, N-1\tag{23} T(u)=<su,f>,u=0,1,,N1(23)

A = [ s 0 T s 1 T ⋮ s N − 1 T ] = [ s 0 s 1 … s N − 1 ] T (24) \mathbf{A}=\left[\begin{array}{c} \mathbf{s}_{0}^{T} \\ \mathbf{s}_{1}^{T} \\ \vdots \\ \mathbf{s}_{N-1}^{T} \end{array}\right]=\left[\begin{array}{llll} \mathbf{s}_{0} & \mathbf{s}_{1} & \ldots & \mathbf{s}_{N-1} \end{array}\right]^{T}\tag{24} A= s0Ts1TsN1T =[s0s1sN1]T(24)

然后将式 ( 23 ) (23) (23)代入式 ( 21 ) (21) (21), 并利用式 ( 1 ) (1) (1), 得
A A T = [ s 0 T s 1 T ⋮ s N − 1 T ] [ s 0 s 1 … s N − 1 ] = [ s 0 T s 0 s 0 T s 1 … s 0 T s N − 1 s 1 T s 0 s 1 T s 1 ⋮ ⋮ ⋱ s N − 1 T s 0 … s N − 1 T s N − 1 ] = [ ⟨ s 0 , s 0 ⟩ ⟨ s 0 , s 1 ⟩ … ⟨ s 0 , s N − 1 ⟩ ⟨ s 1 , s 0 ⟩ ⟨ s 1 , s 1 ⟩ ⋮ ⋮ ⋱ ⟨ s N − 1 , s 0 ⟩ … ⟨ s N − 1 , s N − 1 ⟩ ] = [ 1 0 … 0 0 1 ⋮ ⋮ ⋱ 0 … 1 ] = I (27) \begin{aligned} \mathbf{A A}^{T} & =\left[\begin{array}{c} \mathbf{s}_{0}^{T} \\ \mathbf{s}_{1}^{T} \\ \vdots \\ \mathbf{s}_{N-1}^{T} \end{array}\right]\left[\begin{array}{llll} \mathbf{s}_{0} & \mathbf{s}_{1} & \ldots & \mathbf{s}_{N-1} \end{array}\right] \\ & =\left[\begin{array}{cccc} \mathbf{s}_{0}^{T} \mathbf{s}_{0} & \mathbf{s}_{0}^{T} \mathbf{s}_{1} & \ldots & \mathbf{s}_{0}^{T} \mathbf{s}_{N-1} \\ \mathbf{s}_{1}^{T} \mathbf{s}_{0} & \mathbf{s}_{1}^{T} \mathbf{s}_{1} & & \vdots \\ \vdots & & \ddots & \\ \mathbf{s}_{N-1}^{T} \mathbf{s}_{0} & \ldots & & \mathbf{s}_{N-1}^{T} \mathbf{s}_{N-1} \end{array}\right] \\ & =\left[\begin{array}{cccc} \left\langle\mathbf{s}_{0}, \mathbf{s}_{0}\right\rangle & \left\langle\mathbf{s}_{0}, \mathbf{s}_{1}\right\rangle & \ldots & \left\langle\mathbf{s}_{0}, \mathbf{s}_{N-1}\right\rangle \\ \left\langle\mathbf{s}_{1}, \mathbf{s}_{0}\right\rangle & \left\langle\mathbf{s}_{1}, \mathbf{s}_{1}\right\rangle & & \vdots \\ \vdots & & \ddots & \\ \left\langle\mathbf{s}_{N-1}, \mathbf{s}_{0}\right\rangle & \ldots & & \left\langle\mathbf{s}_{N-1}, \mathbf{s}_{N-1}\right\rangle \end{array}\right] \\ & =\left[\begin{array}{cccc} 1 & 0 & \ldots & 0 \\ 0 & 1 & & \vdots \\ \vdots & & \ddots & \\ 0 & \ldots & & 1 \end{array}\right]=\mathbf{I} \end{aligned}\tag{27} AAT= s0Ts1TsN1T [s0s1sN1]= s0Ts0s1Ts0sN1Ts0s0Ts1s1Ts1s0TsN1sN1TsN1 = s0,s0s1,s0sN1,s0s0,s1s1,s1s0,sN1sN1,sN1 = 1000101 =I(27)


t = A f (26) t=Af\tag{26} t=Af(26)
对于一维信号, 利用矩阵表达式 ( 16 ) (16) (16)和式 ( 17 ) (17) (17)
t = A f (28) t=Af \tag{28} t=Af(28)
f = A T t (29) f=A^Tt\tag{29} f=ATt(29)
( 28 ) (28) (28)和式 ( 29 ) (29) (29)是可逆变换对。

本节中给出的大部分概念, 可推广到形如下式的连续展开:
f ( x ) = ∑ u = − ∞ + ∞ α u s u ( x ) (51) f(x)=\sum_{u=-\infty}^{+\infty} \alpha_{u} s_{u}(x)\tag{51} f(x)=u=+αusu(x)(51)
其中, α u \alpha_{u} αu s u s_{u} su u = 0 , ± 1 , ± 2 , ± 3 , ⋯ u=0, \pm 1, \pm 2, \pm 3, \cdots u=0,±1,±2,±3,分别表示内积空间 C ( [ a , b ] ) C([a, b]) C([a,b])的展开系数和基向量。

s u s_{u} su u = 0 , ± 1 , ± 2 , ± 3 , ⋯ u=0, \pm 1, \pm 2, \pm 3, \cdots u=0,±1,±2,±3, C ( [ a , b ] ) C([a, b]) C([a,b])的正交基向量, 则展开系数:
α u = ⟨ s u ( x ) , f ( x ) ⟩ (52) \alpha_{u}=\left \langle s_{u}(x), f(x) \right \rangle\tag{52} αu=su(x),f(x)(52)

三、相关

本节介绍这些系数与相关之间的关系。

你可能感兴趣的:(数字图像处理,算法,线性代数)