本文,我们将以回放(Playback,播放音频)为例,讲解PCM Data是如何从用户空间到内核空间,最后传递到Codec。
在Linux 音频驱动(一) ASoC音频框架简介中,我们给出了回放(Playback)PCM数据流示意图:
下面基于源码讲解PCM Data Flow。
内核版本:Kernel 版本:3.10
内核源码文件:
./kernel-3.10/sound/core/device.c
./kernel-3.10/sound/core/init.c
./kernel-3.10/sound/core/pcm.c
./kernel-3.10/sound/core/pcm_lib.c
./kernel-3.10/sound/core/pcm_native.c
./kernel-3.10/sound/soc/soc-pcm.c
Tinyalsa源码文件:
./external/tinyalsa/pcm.c
./external/kernel-headers/original/uapi/sound/asound.h
User Space
在我的源码包里,用户空间应用程序使用的是 tinyalsa提供的接口write PCM Data,即播放音频文件。
Write PCM逻辑设备是通过 ioctl() 函数完成的,即应用程序将需要播放的音频数据通过pcm_write() --> ioctl() 传递到内核。
// ./external/kernel-headers/original/uapi/sound/asound.h, line 448
struct snd_xferi {
snd_pcm_sframes_t result;
void __user *buf;
snd_pcm_uframes_t frames;
};
// ./external/tinyalsa/pcm.c, line 483
int pcm_write(struct pcm *pcm, const void *data, unsigned int count)
{
struct snd_xferi x;
......
x.buf = (void*)data;
x.frames = count / (pcm->config.channels *
pcm_format_to_bits(pcm->config.format) / 8);
......
ioctl(pcm->fd, SNDRV_PCM_IOCTL_WRITEI_FRAMES, &x);
......
}
音频数据中的几个重要概念:
Format:样本长度(采样精度 or 采样深度),音频数据最基本的单位,常见的有 8 位和 16 位;
Channel:声道数,分为单声道 mono 和立体声stereo;
Frame:帧,构成一个完整的声音单元,Frame = Format * Channel;
Rate:又称 sample rate:采样率,即每秒的采样次数,针对帧而言;
Period size:周期,每次硬件中断处理音频数据的帧数,对于音频设备的数据读写,以此为单位;
Buffer size:数据缓冲区大小,这里指runtime 的 buffer size,而不是结构体 snd_pcm_hardware 中定义的buffer_bytes_max;一般来说 buffer_size = period_size * period_count,period_count 相当于处理完一个 buffer 数据所需的硬件中断次数。
为了通过系统调用ioctl()
传递音频数据,定义了struct snd_xferi x
,x.buf
指向本次要播放的音频数据,x.frames
表示本次音频数据总共有多少帧(frame)。
Kernel Space
通过系统调用ioctl()
传递数据到内核,在内核空间是PCM逻辑设备对应的snd_pcm_f_ops[0].unlocked_ioctl()
。
// ./kernel-3.10/sound/core/pcm_native.c, line 3481
const struct file_operations snd_pcm_f_ops[2] = {
{
.owner = THIS_MODULE,
.write = snd_pcm_write,
......
.unlocked_ioctl = snd_pcm_playback_ioctl,
......
},
{
.owner = THIS_MODULE,
.read = snd_pcm_read,
......
.unlocked_ioctl = snd_pcm_capture_ioctl,
......
}
};
snd_pcm_playback_ioctl()
直接调用了snd_pcm_playback_ioctl1()
。
// ./kernel-3.10/sound/core/pcm_native.c, line 2784
static long snd_pcm_playback_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct snd_pcm_file *pcm_file;
pcm_file = file->private_data;
......
return snd_pcm_playback_ioctl1(file, pcm_file->substream, cmd, (void __user *)arg);
}
snd_pcm_playback_ioctl1()函数:
a. 定义struct snd_xferi xferi
,为了获取用户空间传来的arg;
b. 调用put_user()
清除snd_xferi.result状态;
c. 调用copy_from_user()
将取用户空间的arg拷贝到内核空间,即拷贝音频数据存储空间的指针buf和音频数据帧数frames;
d. 调用snd_pcm_lib_write()
;
e. 调用put_user()
回填write结果_xferi->result。
// ./kernel-3.10/sound/core/pcm_native.c, line 2624
static int snd_pcm_playback_ioctl1(struct file *file, struct snd_pcm_substream *substream, unsigned int cmd, void __user *arg)
{
......
switch (cmd) {
case SNDRV_PCM_IOCTL_WRITEI_FRAMES:
{
struct snd_xferi xferi;
struct snd_xferi __user *_xferi = arg;
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_sframes_t result;
if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
return -EBADFD;
if (put_user(0, &_xferi->result))
return -EFAULT;
if (copy_from_user(&xferi, _xferi, sizeof(xferi)))
return -EFAULT;
result = snd_pcm_lib_write(substream, xferi.buf, xferi.frames);
__put_user(result, &_xferi->result);
return result < 0 ? result : 0;
}
......
}
snd_pcm_lib_write()
做一些参数检查后调用snd_pcm_lib_write1()
。注意调用snd_pcm_lib_write1()
时传入的最后一个参数snd_pcm_lib_write_transfer
,该函数完成音频数据从 kernel space 到 DMA Buffer 的传输。
// ./kernel-3.10/sound/core/pcm_lib.c, line 2101
snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
{
struct snd_pcm_runtime *runtime;
int nonblock;
......
nonblock = !!(substream->f_flags & O_NONBLOCK);
......
return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_write_transfer);
}
如下snd_pcm_lib_write1()
代码段中,第40行调用transfer()
,即调用snd_pcm_lib_write_transfer()
,将音频数据从 kernel space 拷贝到 DMA Buffer。然后,在第49行,调用snd_pcm_start()
启动DMA传输,将音频数据从 DMA Buffer 拷贝到 I2S TX FIFO。
// ./kernel-3.10/sound/core/pcm_lib.c, line 1985
static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, unsigned long data,
snd_pcm_uframes_t size, int nonblock, transfer_f transfer)
{
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_uframes_t xfer = 0;
snd_pcm_uframes_t offset = 0;
snd_pcm_uframes_t avail;
int err = 0;
if (size == 0)
return 0;
......
runtime->twake = runtime->control->avail_min ? : 1;
if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
snd_pcm_update_hw_ptr(substream);
avail = snd_pcm_playback_avail(runtime);
while (size > 0) {
snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
snd_pcm_uframes_t cont;
if (!avail) {
if (nonblock) {
err = -EAGAIN;
goto _end_unlock;
}
runtime->twake = min_t(snd_pcm_uframes_t, size,
runtime->control->avail_min ? : 1);
err = wait_for_avail(substream, &avail);
if (err < 0)
goto _end_unlock;
}
frames = size > avail ? avail : size;
cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
if (frames > cont)
frames = cont;
......
appl_ptr = runtime->control->appl_ptr;
appl_ofs = appl_ptr % runtime->buffer_size;
snd_pcm_stream_unlock_irq(substream);
err = transfer(substream, appl_ofs, data, offset, frames); //将音频数据从 kernel space 拷贝到 DMA Buffer
snd_pcm_stream_lock_irq(substream);
......
offset += frames;
size -= frames;
xfer += frames;
avail -= frames;
if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
err = snd_pcm_start(substream); //启动DMA传输,将音频数据从 DMA Buffer 拷贝到 I2S TX FIFO
if (err < 0)
goto _end_unlock;
}
}
......
}
snd_pcm_lib_write_transfer()中:
a. 如果有设定过substream->ops->copy回调函数,则执行substream->ops->copy()将音频数据从 kernel space 拷贝到 DMA Buffer。
b. 如果没有设定substream->ops->copy回调函数,则直接调用copy_from_user()将音频数据从 kernel space 拷贝到 DMA Buffer。
// ./kernel-3.10/sound/core/pcm_lib.c, line 1962
static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream, unsigned int hwoff,
unsigned long data, unsigned int off, snd_pcm_uframes_t frames)
{
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
if (substream->ops->copy) {
if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
return err;
} else {
char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
return -EFAULT;
}
return 0;
}
注:本例中,substream->ops->copy回调函数是在soc_new_pcm()中设置的。在soc_new_pcm()中,如果有设定platform->driver->ops (即PCM DMA驱动操作函数集),则PCM逻辑设备的某些操作函数将会被platform->driver->ops中覆盖掉,如下代码段第26行。
// ./kernel-3.10/sound/soc/soc-pcm.c, line 2005
int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
{
......
/* ASoC PCM operations */
if (rtd->dai_link->dynamic) {
rtd->ops.open = dpcm_fe_dai_open;
rtd->ops.hw_params = dpcm_fe_dai_hw_params;
rtd->ops.prepare = dpcm_fe_dai_prepare;
rtd->ops.trigger = dpcm_fe_dai_trigger;
rtd->ops.hw_free = dpcm_fe_dai_hw_free;
rtd->ops.close = dpcm_fe_dai_close;
rtd->ops.pointer = soc_pcm_pointer;
rtd->ops.ioctl = soc_pcm_ioctl;
} else {
rtd->ops.open = soc_pcm_open;
rtd->ops.hw_params = soc_pcm_hw_params;
rtd->ops.prepare = soc_pcm_prepare;
rtd->ops.trigger = soc_pcm_trigger;
rtd->ops.hw_free = soc_pcm_hw_free;
rtd->ops.close = soc_pcm_close;
rtd->ops.pointer = soc_pcm_pointer;
rtd->ops.ioctl = soc_pcm_ioctl;
}
if (platform->driver->ops) {
rtd->ops.ack = platform->driver->ops->ack;
rtd->ops.copy = platform->driver->ops->copy;
rtd->ops.silence = platform->driver->ops->silence;
rtd->ops.page = platform->driver->ops->page;
rtd->ops.mmap = platform->driver->ops->mmap;
}
......
}
现在看一下snd_pcm_start()
如何启动DMA传输的。
snd_pcm_start()
直接调用了snd_pcm_action()
。此处要注意snd_pcm_action()
的第一个参数snd_pcm_action_start
。snd_pcm_action()
在多个地方会被调用,要注意其被调用时的第一个参数是什么。
// ./kernel-3.10/sound/core/pcm_native.c, line 891
static struct action_ops snd_pcm_action_start = {
.pre_action = snd_pcm_pre_start,
.do_action = snd_pcm_do_start,
.undo_action = snd_pcm_undo_start,
.post_action = snd_pcm_post_start
};
// ./kernel-3.10/sound/core/pcm_native.c, line 904
int snd_pcm_start(struct snd_pcm_substream *substream)
{
return snd_pcm_action(&snd_pcm_action_start, substream, SNDRV_PCM_STATE_RUNNING);
}
snd_pcm_action()
中会调用snd_pcm_action_group()
或snd_pcm_action_single()
。为简化讲解,我们关注snd_pcm_action_single()
。snd_pcm_action_single()
函数非常简单,就是执行struct action_ops *ops
指向的回调函数集,本例中为上文提到的snd_pcm_action_start
。
// ./kernel-3.10/sound/core/pcm_native.c, line 785
static int snd_pcm_action(struct action_ops *ops, struct snd_pcm_substream *substream, int state)
{
int res;
if (snd_pcm_stream_linked(substream)) {
if (!spin_trylock(&substream->group->lock)) {
spin_unlock(&substream->self_group.lock);
spin_lock(&substream->group->lock);
spin_lock(&substream->self_group.lock);
}
res = snd_pcm_action_group(ops, substream, state, 1);
spin_unlock(&substream->group->lock);
} else {
res = snd_pcm_action_single(ops, substream, state);
}
return res;
}
// ./kernel-3.10/sound/core/pcm_native.c, line 765
static int snd_pcm_action_single(struct action_ops *ops,
struct snd_pcm_substream *substream,
int state)
{
int res;
res = ops->pre_action(substream, state);
if (res < 0)
return res;
res = ops->do_action(substream, state);
if (res == 0)
ops->post_action(substream, state);
else if (ops->undo_action)
ops->undo_action(substream, state);
return res;
}
我们重点看一下ops->do_action()
,即snd_pcm_do_start()
。在前面soc_new_pcm()
代码段中,我们看到substream->ops->trigger()
被设定为soc_pcm_trigger()
,该函数依次调用codec_dai driver的trigger函数、pcm_dma的trigger函数、cpu_dai driver的trigger函数。
// ./kernel-3.10/sound/core/pcm_native.c, line 862
static int snd_pcm_do_start(struct snd_pcm_substream *substream, int state)
{
if (substream->runtime->trigger_master != substream)
return 0;
return substream->ops->trigger(substream, SNDRV_PCM_TRIGGER_START);
}
// ./kernel-3.10/sound/core/soc-pcm.c, line 609
static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_platform *platform = rtd->platform;
struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
struct snd_soc_dai *codec_dai = rtd->codec_dai;
int ret;
if (codec_dai->driver->ops->trigger) {
ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai); //调用codec_dai driver的trigger函数 (可选的)
if (ret < 0)
return ret;
}
if (platform->driver->ops && platform->driver->ops->trigger) {
ret = platform->driver->ops->trigger(substream, cmd); //调用pcm_dma的trigger函数
if (ret < 0)
return ret;
}
if (cpu_dai->driver->ops->trigger) {
ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai); //调用cpu_dai driver的trigger函数 (可选的)
if (ret < 0)
return ret;
}
return 0;
}
问题:为什么执行trigger函数的顺序是codec_dai --> pcm_dma --> cpu_dai 呢 ?是否可以调整顺序 ?
思考:
是可以调整的。(下面的思考是我个人想法,其实我倾向于相信这部分的设计是大神有意为之的,可能我还没理解吧。)
首先,codec_dai和cpu_dai的trigger函数是可选的。查看struct snd_soc_dai_ops结构体的源码,可以看到其中PCM operation函数集注释说“ALSA PCM audio operations - all optional.”。
其次,假设codec_dai和cpu_dai的trigger都有定义,个人认为相对理想的顺序应该是codec_dai --> cpu_dai --> pcm_dma。因为,当我们启动DMA将音频数据拷贝到cpu_dai(I2S TX Buffer)时,如果该硬件还没有ready,那DMA搬过去的数据可能会丢失。同理,如果cpu_dai开始传数据了,而codec_dai(I2S RX Buffer)没有ready,那数据也有可能丢失。理论上应该是在启动DMA之前,数据流下一接收装置应该已经ready。所以,我才会说相对理想的trigger顺序应该是codec_dai --> cpu_dai --> pcm_dma。
(我目前使用的MTK平台没有定义codec_dai和cpu_dai的trigger函数,没有办法研究该顺序是否有意义。有条件的读者可以调整顺序,看是否会对音频播放造成问题。)
下面介绍trigger函数的内容不同的SoC平台会有差异,本例基于MTK平台的源码分析。
本例中,codec_dai driver的trigger函数、pcm_dma的trigger函数、cpu_dai driver的trigger函数分别如下:
codec_dai driver的trigger函数:
mt6323_codec_trigger()
,虽然该函数有定义,但是该函数没有做任何事情。
// ./kernel-3.10/sound/soc/mediatek/mt_soc_audio_v3/mt_soc_codec_63xx.c, line 1070
static struct snd_soc_dai_driver mtk_6331_dai_codecs[] =
{
{
.name = MT_SOC_CODEC_TXDAI_NAME,
.ops = &mt6323_aif1_dai_ops,
......
},
......
}
// ./kernel-3.10/sound/soc/mediatek/mt_soc_audio_v3/mt_soc_codec_63xx.c, line 1063
static const struct snd_soc_dai_ops mt6323_aif1_dai_ops =
{
.startup = mt63xx_codec_startup,
.prepare = mt63xx_codec_prepare,
.trigger = mt6323_codec_trigger,
};
// ./kernel-3.10/sound/soc/mediatek/mt_soc_audio_v3/mt_soc_codec_63xx.c, line 1048
static int mt6323_codec_trigger(struct snd_pcm_substream *substream , int command , struct snd_soc_dai *Daiport)
{
switch (command)
{
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
break;
}
return 0;
}
pcm_dma的trigger函数:
mtk_pcm_I2S0dl1_trigger()
// ./kernel-3.10/sound/soc/mediatek/mt_soc_audio_v3/mt_soc_pcm_dl1_i2s0Dl1.c, line 730
static struct snd_soc_platform_driver mtk_I2S0dl1_soc_platform =
{
.ops = &mtk_I2S0dl1_ops,
.pcm_new = mtk_asoc_pcm_I2S0dl1_new,
.probe = mtk_afe_I2S0dl1_probe,
};
// ./kernel-3.10/sound/soc/mediatek/mt_soc_audio_v3/mt_soc_pcm_dl1_i2s0Dl1.c, line 715
static struct snd_pcm_ops mtk_I2S0dl1_ops =
{
......
.trigger = mtk_pcm_I2S0dl1_trigger,
.pointer = mtk_pcm_I2S0dl1_pointer,
.copy = mtk_pcm_I2S0dl1_copy,
......
};
// ./kernel-3.10/sound/soc/mediatek/mt_soc_audio_v3/mt_soc_pcm_dl1_i2s0Dl1.c, line 529
static int mtk_pcm_I2S0dl1_trigger(struct snd_pcm_substream *substream, int cmd)
{
//printk("mtk_pcm_I2S0dl1_trigger cmd = %d\n", cmd);
switch (cmd)
{
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
return mtk_pcm_I2S0dl1_start(substream); // 启动 dma 传输
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
return mtk_pcm_I2S0dl1_stop(substream); // 停止 dma 传输
}
return -EINVAL;
}
// ./kernel-3.10/sound/soc/mediatek/mt_soc_audio_v3/mt_soc_pcm_dl1_i2s0Dl1.c, line 493
static int mtk_pcm_I2S0dl1_start(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
printk("%s\n", __func__);
// here start digital part
SetConnection(Soc_Aud_InterCon_Connection, Soc_Aud_InterConnectionInput_I05, Soc_Aud_InterConnectionOutput_O00);
SetConnection(Soc_Aud_InterCon_Connection, Soc_Aud_InterConnectionInput_I06, Soc_Aud_InterConnectionOutput_O01);
SetConnection(Soc_Aud_InterCon_Connection, Soc_Aud_InterConnectionInput_I05, Soc_Aud_InterConnectionOutput_O03);
SetConnection(Soc_Aud_InterCon_Connection, Soc_Aud_InterConnectionInput_I06, Soc_Aud_InterConnectionOutput_O04);
SetIrqEnable(Soc_Aud_IRQ_MCU_MODE_IRQ1_MCU_MODE, true);
SetSampleRate(Soc_Aud_Digital_Block_MEM_DL1, runtime->rate);
SetChannels(Soc_Aud_Digital_Block_MEM_DL1, runtime->channels);
SetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_DL1, true);
EnableAfe(true);
......
return 0;
}
cpu_dai driver的trigger函数:本例中没有实现该函数
// ./kernel-3.10/sound/soc/mediatek/mt_soc_audio_v3/mt_soc_dai_stub.c, line 98
static struct snd_soc_dai_driver mtk_dai_stub_dai[] =
{
{
......
.name = MT_SOC_DL1DAI_NAME,
.ops = &mtk_dai_stub_ops,
},
......
}
// ./kernel-3.10/sound/soc/mediatek/mt_soc_audio_v3/mt_soc_dai_stub.c, line 93
static struct snd_soc_dai_ops mtk_dai_stub_ops =
{
.startup = multimedia_startup,
};
回放(Playback)PCM数据流示意图:
最后简单总结一下PCM write时的数据传递:
i. 应用程序调用tinyalsa提供的接口pcm_write()-->ioctl()
将需要回放的音频数据指针和帧数传递给内核。
ii. 内核在snd_pcm_lib_write_transfer()
函数中使用copy_from_user()
将音频数据从user space拷贝到kernel space,即从应用程序的buffer拷贝到DMA buffer。
iii. 内核在snd_pcm_start()
中启动DMA传输,将音频数据从DMA buffer拷贝到I2S TX FIFO。(实质上是通过pcm_dma的trigger函数来做的。)