Windows下利用VS使用Caffe可以为开发者提供很好的体验,但是每次编译的时候的总是十分钟的时间在改代码,剩下50分钟在编译的过程中,另外在实际图像分类开发中,很多情况下我们可能只需要一两个函数,所以怎么把caffe的classfy封装成我们需要的dll和lib,可以不依赖caffe的框架,在新建的解决方案中,可以直接调用。
本文主要封装了两个版本的caffe
1:happynear版本:https://github.com/happynear/caffe-windows
http://blog.csdn.net/sinat_30071459/article/details/51823390
以上版本主要参考了小咸鱼的博客,给我提供了很大的帮助,大家可以按照他的方法
2:微软caffe版本:
1:编译微软caffe http://blog.csdn.net/shakevincent/article/details/51694686
2:添加需要的文件:
添加classification.h
#ifndef CLASSIFICATION_H_
#define CLASSIFICATION_H_
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace caffe;
using std::string;
typedef std::pair<int, float> Prediction;
class ClassifierImpl {
public:
ClassifierImpl(const string& model_file,
const string& trained_file,
const string& mean_file
);
std::vector Classify(const cv::Mat& img, int N = 2);
private:
void SetMean(const string& mean_file);
std::vector<float> Predict(const cv::Mat& img);
void WrapInputLayer(std::vector * input_channels);
void Preprocess(const cv::Mat& img,
std::vector * input_channels);
private:
shared_ptrfloat> > net_;
cv::Size input_geometry_;
int num_channels_;
cv::Mat mean_;
};
#endif
添加classification.cpp
#include "classification.h"
ClassifierImpl::ClassifierImpl(const string& model_file,
const string& trained_file,
const string& mean_file) {
#ifdef CPU_ONLY
Caffe::set_mode(Caffe::CPU);
#else
Caffe::set_mode(Caffe::GPU);
#endif
/* Load the network. */
net_.reset(new Net<float>(model_file, TEST));
net_->CopyTrainedLayersFrom(trained_file);
CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";
Blob<float>* input_layer = net_->input_blobs()[0];
num_channels_ = input_layer->channels();
CHECK(num_channels_ == 3 || num_channels_ == 1)
<< "Input layer should have 1 or 3 channels.";
input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
/* Load the binaryproto mean file. */
SetMean(mean_file);
//Blob* output_layer = net_->output_blobs()[0];
}
static bool PairCompare(const std::pair<float, int>& lhs,
const std::pair<float, int>& rhs) {
return lhs.first > rhs.first;
}
/* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
std::vector<std::pair<float, int> > pairs;
for (size_t i = 0; i < v.size(); ++i)
pairs.push_back(std::make_pair(v[i], i));
std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);
std::vector<int> result;
for (int i = 0; i < N; ++i)
result.push_back(pairs[i].second);
return result;
}
/* Return the top N predictions. */
std::vector ClassifierImpl::Classify(const cv::Mat& img, int N) {
std::vector<float> output = Predict(img);
std::vector<int> maxN = Argmax(output, N);
std::vector predictions;
for (int i = 0; i < N; ++i) {
int idx = maxN[i];
predictions.push_back(std::make_pair(idx, output[idx]));
}
return predictions;
}
/* Load the mean file in binaryproto format. */
void ClassifierImpl::SetMean(const string& mean_file) {
BlobProto blob_proto;
ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
Blob<float> mean_blob;
mean_blob.FromProto(blob_proto);
CHECK_EQ(mean_blob.channels(), num_channels_)
<< "Number of channels of mean file doesn't match input layer.";
std::vector channels;
float* data = mean_blob.mutable_cpu_data();
for (int i = 0; i < num_channels_; ++i) {
cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
channels.push_back(channel);
data += mean_blob.height() * mean_blob.width();
}
cv::Mat mean;
cv::merge(channels, mean);
cv::Scalar channel_mean = cv::mean(mean);
mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}
std::vector<float> ClassifierImpl::Predict(const cv::Mat& img) {
Blob<float>* input_layer = net_->input_blobs()[0];
input_layer->Reshape(1, num_channels_,
input_geometry_.height, input_geometry_.width);
/* Forward dimension change to all layers. */
net_->Reshape();
std::vector input_channels;
WrapInputLayer(&input_channels);
Preprocess(img, &input_channels);
net_->ForwardPrefilled();
/* Copy the output layer to a std::vector */
Blob<float>* output_layer = net_->output_blobs()[0];
const float* begin = output_layer->cpu_data();
const float* end = begin + output_layer->channels();
return std::vector<float>(begin, end);
}
void ClassifierImpl::WrapInputLayer(std::vector * input_channels) {
Blob<float>* input_layer = net_->input_blobs()[0];
int width = input_layer->width();
int height = input_layer->height();
float* input_data = input_layer->mutable_cpu_data();
for (int i = 0; i < input_layer->channels(); ++i) {
cv::Mat channel(height, width, CV_32FC1, input_data);
input_channels->push_back(channel);
input_data += width * height;
}
}
void ClassifierImpl::Preprocess(const cv::Mat& img,
std::vector * input_channels) {
cv::Mat sample;
if (img.channels() == 3 && num_channels_ == 1)
cv::cvtColor(img, sample, CV_BGR2GRAY);
else if (img.channels() == 4 && num_channels_ == 1)
cv::cvtColor(img, sample, CV_BGRA2GRAY);
else if (img.channels() == 4 && num_channels_ == 3)
cv::cvtColor(img, sample, CV_BGRA2BGR);
else if (img.channels() == 1 && num_channels_ == 3)
cv::cvtColor(img, sample, CV_GRAY2BGR);
else
sample = img;
cv::Mat sample_resized;
if (sample.size() != input_geometry_)
cv::resize(sample, sample_resized, input_geometry_);
else
sample_resized = sample;
cv::Mat sample_float;
if (num_channels_ == 3)
sample_resized.convertTo(sample_float, CV_32FC3);
else
sample_resized.convertTo(sample_float, CV_32FC1);
cv::Mat sample_normalized;
cv::subtract(sample_float, mean_, sample_normalized);
cv::split(sample_normalized, *input_channels);
CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
== net_->input_blobs()[0]->cpu_data())
<< "Input channels are not wrapping the input layer of the network.";
}
添加multi_recognition_gpu.h
#ifndef MULTI_RECOGNITION_GPU_H_
#define MULTI_RECOGNITION_GPU_H_
#ifdef MULTI_RECOGNITION_API_EXPORTS
#define MULTI_RECOGNITION_API __declspec(dllexport)
#else
#define MULTI_RECOGNITION_API __declspec(dllimport)
#endif
#include
#include
#include
#include
#include
#include
#include
class ClassifierImpl;
using std::string;
using std::vector;
typedef std::pair<int, float> Prediction;
class MULTI_RECOGNITION_API MultiClassifier
{
public:
MultiClassifier(const string& model_file,
const string& trained_file,
const string& mean_file);
~MultiClassifier();
vector Classify(const cv::Mat& img, int N = 2);
void getFiles(std::string path, std::vector<std::string>& files);
private:
ClassifierImpl *Impl;
};
#endif
添加multi_recognition_gpu.cpp
#include "multi_recognition_gpu.h"
#include "classification.h"
MultiClassifier::MultiClassifier(const string& model_file, const string& trained_file, const string& mean_file)
{
Impl = new ClassifierImpl(model_file, trained_file, mean_file);
}
MultiClassifier::~MultiClassifier()
{
delete Impl;
}
std::vector MultiClassifier::Classify(const cv::Mat& img, int N /* = 2 */)
{
return Impl->Classify(img, N);
}
很不要脸的基本上全是抄的小咸鱼的代码:http://blog.csdn.net/sinat_30071459/article/details/53786732
。
代码添加完成就要开始编译了:!!!!!!!!!!!!!!
但是会出现一些错误:link Error 等!正常理解在编译caffe的已经把需要的lib都包含了,为什么还是有很多的错误:
怎么办呢?
重新添加一下呗:include和lib
libboost_chrono-vc120-mt-1_59.lib
libboost_date_time-vc120-mt-1_59.lib
libboost_filesystem-vc120-mt-1_59.lib
libboost_python-vc120-mt-1_59.lib
libboost_system-vc120-mt-1_59.lib
libboost_thread-vc120-mt-1_59.lib
gflags.lib
gflags_nothreads.lib
gflags_nothreadsd.lib
gflagsd.lib
libglog.lib
hdf5.lib
hdf5_cpp.lib
hdf5_f90cstub.lib
hdf5_fortran.lib
hdf5_hl_cpp.lib
hdf5_hl.lib
hdf5_hl_f90cstub.lib
hdf5_hl_fortran.lib
hdf5_tools.lib
szip.lib
zlib.lib
LevelDb.lib
lmdb.lib
lmdbD.lib
libprotobuf.lib
opencv_calib3d2410.lib
opencv_contrib2410.lib
opencv_core2410.lib
opencv_features2d2410.lib
opencv_flann2410.lib
opencv_gpu2410.lib
opencv_highgui2410.lib
opencv_imgproc2410.lib
opencv_legacy2410.lib
opencv_ml2410.lib
opencv_nonfree2410.lib
opencv_objdetect2410.lib
opencv_ocl2410.lib
opencv_photo2410.lib
opencv_stitching2410.lib
opencv_superres2410.lib
opencv_ts2410.lib
opencv_video2410.lib
opencv_videostab2410.lib
cublas.lib
cuda.lib
cublas_device.lib
cudadevrt.lib
cudart_static.lib
cudart.lib
cudnn.lib
cufftw.lib
cufft.lib
cusolver.lib
curand.lib
cusparse.lib
nppc.lib
npps.lib
nppi.lib
nvcuvid.lib
nvblas.lib
nvrtc.lib
OpenCL.lib
千万注意不要把NugetPackages中所有的lib全部添加到链接器-输入中!可能是我对-s -mt -sgd的理解不透彻才会出现这个错误,大牛可能就一眼就知道的怎么回事。
添加完成后就可以成功生成需要的lib和dll,剩下的就是测试一下生成的文件能不能用了,
#include
#include
#include
#include
#include "multi_recognition_gpu.h"
#pragma comment(lib,"type_recognition_ver2_api_gpu.lib")
using namespace cv;
int main(int argc, char** argv)
{
std::string model_file("./model/deploy.prototxt");
std::string trained_file("./model/net.caffemodel");
std::string mean_file("./model/type_mean.binaryproto");
std::string label_file("./model/typelabels.txt");
//const Scalar bgr_mean(0, 0, 0);
MultiClassifier myclassifier(model_file, trained_file, mean_file);//, label_file);//, label_file);
cv::Mat img = cv::imread("./model/1.jpg", -1);
std::vector result = myclassifier.Classify(img);
Prediction p = result[0];
std::cout << "类别:" << p.first << "确信度:" << p.second << "\n";
return 0;
}
另外如果大家需要自己的分类函数,可以在classfication中修改,也可以修改成多输出的,等等!
至于dll和lib的下载大家请移步小咸鱼的博客。只是现在很多人在用微软的caffe,所以就借用了一些资源!