python识别中文验证码_python如何识别验证码

在python爬虫爬取某些网站的验证码的时候可能会遇到验证码识别的问题,现在的验证码大多分为四类:1、计算验证码2、滑块验证码3、识图验证码4、语音验证码

python识别中文验证码_python如何识别验证码_第1张图片

这里主要是识别验证码,识别的是简单的验证码,要想让识别率更高,识别的更加准确就需要花很多的精力去训练自己的字体库。

识别验证码通常是这几个步骤:

1、灰度处理

2、二值化

3、去除边框(如果有的话)

4、降噪

5、切割字符或者倾斜度矫正

6、训练字体库

7、识别

这6个步骤中前三个步骤是基本的,4或者5可根据实际情况选择是否需要,并不一定切割验证码,识别率就会上升很多有时候还会下降

用到的几个主要的python库: Pillow(python图像处理库)、OpenCV(高级图像处理库)、pytesseract(识别库)

下面案例使用方法:

1、将要识别的验证码图片放入与脚本同级的img文件夹中,创建out_img文件夹

2、python3 filename

3、二值化、降噪等各个阶段的图片将存储在out_img文件夹中,最终识别结果会打印到屏幕上

完整的二维码识别代码:from PIL import Image

from pytesseract import *

from fnmatch import fnmatch

from queue import Queue

import matplotlib.pyplot as plt

import cv2

import time

import os

def clear_border(img,img_name):

'''去除边框

'''

filename = './out_img/' + img_name.split('.')[0] + '-clearBorder.jpg'

h, w = img.shape[:2]

for y in range(0, w):

for x in range(0, h):

# if y ==0 or y == w -1 or y == w - 2:

if y < 4 or y > w -4:

img[x, y] = 255

# if x == 0 or x == h - 1 or x == h - 2:

if x < 4 or x > h - 4:

img[x, y] = 255

cv2.imwrite(filename,img)

return img

def interference_line(img, img_name):

'''

干扰线降噪

'''

filename = './out_img/' + img_name.split('.')[0] + '-interferenceline.jpg'

h, w = img.shape[:2]

# !!!opencv矩阵点是反的

# img[1,2] 1:图片的高度,2:图片的宽度

for y in range(1, w - 1):

for x in range(1, h - 1):

count = 0

if img[x, y - 1] > 245:

count = count + 1

if img[x, y + 1] > 245:

count = count + 1

if img[x - 1, y] > 245:

count = count + 1

if img[x + 1, y] > 245:

count = count + 1

if count > 2:

img[x, y] = 255

cv2.imwrite(filename,img)

return img

def interference_point(img,img_name, x = 0, y = 0):

"""点降噪

9邻域框,以当前点为中心的田字框,黑点个数

:param x:

:param y:

:return:

"""

filename = './out_img/' + img_name.split('.')[0] + '-interferencePoint.jpg'

# todo 判断图片的长宽度下限

cur_pixel = img[x,y]# 当前像素点的值

height,width = img.shape[:2]

for y in range(0, width - 1):

for x in range(0, height - 1):

if y == 0: # 第一行

if x == 0: # 左上顶点,4邻域

# 中心点旁边3个点

sum = int(cur_pixel) \

+ int(img[x, y + 1]) \

+ int(img[x + 1, y]) \

+ int(img[x + 1, y + 1])

if sum <= 2 * 245:

img[x, y] = 0

elif x == height - 1: # 右上顶点

sum = int(cur_pixel) \

+ int(img[x, y + 1]) \

+ int(img[x - 1, y]) \

+ int(img[x - 1, y + 1])

if sum <= 2 * 245:

img[x, y] = 0

else: # 最上非顶点,6邻域

sum = int(img[x - 1, y]) \

+ int(img[x - 1, y + 1]) \

+ int(cur_pixel) \

+ int(img[x, y + 1]) \

+ int(img[x + 1, y]) \

+ int(img[x + 1, y + 1])

if sum <= 3 * 245:

img[x, y] = 0

elif y == width - 1: # 最下面一行

if x == 0: # 左下顶点

# 中心点旁边3个点

sum = int(cur_pixel) \

+ int(img[x + 1, y]) \

+ int(img[x + 1, y - 1]) \

+ int(img[x, y - 1])

if sum <= 2 * 245:

img[x, y] = 0

elif x == height - 1: # 右下顶点

sum = int(cur_pixel) \

+ int(img[x, y - 1]) \

+ int(img[x - 1, y]) \

+ int(img[x - 1, y - 1])

if sum <= 2 * 245:

img[x, y] = 0

else: # 最下非顶点,6邻域

sum = int(cur_pixel) \

+ int(img[x - 1, y]) \

+ int(img[x + 1, y]) \

+ int(img[x, y - 1]) \

+ int(img[x - 1, y - 1]) \

+ int(img[x + 1, y - 1])

if sum <= 3 * 245:

img[x, y] = 0

else: # y不在边界

if x == 0: # 左边非顶点

sum = int(img[x, y - 1]) \

+ int(cur_pixel) \

+ int(img[x, y + 1]) \

+ int(img[x + 1, y - 1]) \

+ int(img[x + 1, y]) \

+ int(img[x + 1, y + 1])

if sum <= 3 * 245:

img[x, y] = 0

elif x == height - 1: # 右边非顶点

sum = int(img[x, y - 1]) \

+ int(cur_pixel) \

+ int(img[x, y + 1]) \

+ int(img[x - 1, y - 1]) \

+ int(img[x - 1, y]) \

+ int(img[x - 1, y + 1])

if sum <= 3 * 245:

img[x, y] = 0

else: # 具备9领域条件的

sum = int(img[x - 1, y - 1]) \

+ int(img[x - 1, y]) \

+ int(img[x - 1, y + 1]) \

+ int(img[x, y - 1]) \

+ int(cur_pixel) \

+ int(img[x, y + 1]) \

+ int(img[x + 1, y - 1]) \

+ int(img[x + 1, y]) \

+ int(img[x + 1, y + 1])

if sum <= 4 * 245:

img[x, y] = 0

cv2.imwrite(filename,img)

return img

def _get_dynamic_binary_image(filedir, img_name):

'''

自适应阀值二值化

'''

filename = './out_img/' + img_name.split('.')[0] + '-binary.jpg'

img_name = filedir + '/' + img_name

print('.....' + img_name)

im = cv2.imread(img_name)

im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

th1 = cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, 1)

cv2.imwrite(filename,th1)

return th1

def _get_static_binary_image(img, threshold = 140):

'''

手动二值化

'''

img = Image.open(img)

img = img.convert('L')

pixdata = img.load()

w, h = img.size

for y in range(h):

for x in range(w):

if pixdata[x, y] < threshold:

pixdata[x, y] = 0

else:

pixdata[x, y] = 255

return img

def cfs(im,x_fd,y_fd):

'''用队列和集合记录遍历过的像素坐标代替单纯递归以解决cfs访问过深问题

'''

# print('**********')

xaxis=[]

yaxis=[]

visited =set()

q = Queue()

q.put((x_fd, y_fd))

visited.add((x_fd, y_fd))

offsets=[(1, 0), (0, 1), (-1, 0), (0, -1)]#四邻域

while not q.empty():

x,y=q.get()

for xoffset,yoffset in offsets:

x_neighbor,y_neighbor = x+xoffset,y+yoffset

if (x_neighbor,y_neighbor) in (visited):

continue # 已经访问过了

visited.add((x_neighbor, y_neighbor))

try:

if im[x_neighbor, y_neighbor] == 0:

xaxis.append(x_neighbor)

yaxis.append(y_neighbor)

q.put((x_neighbor,y_neighbor))

except IndexError:

pass

# print(xaxis)

if (len(xaxis) == 0 | len(yaxis) == 0):

xmax = x_fd + 1

xmin = x_fd

ymax = y_fd + 1

ymin = y_fd

else:

xmax = max(xaxis)

xmin = min(xaxis)

ymax = max(yaxis)

ymin = min(yaxis)

#ymin,ymax=sort(yaxis)

return ymax,ymin,xmax,xmin

def detectFgPix(im,xmax):

'''搜索区块起点

'''

h,w = im.shape[:2]

for y_fd in range(xmax+1,w):

for x_fd in range(h):

if im[x_fd,y_fd] == 0:

return x_fd,y_fd

def CFS(im):

'''切割字符位置

'''

zoneL=[]#各区块长度L列表

zoneWB=[]#各区块的X轴[起始,终点]列表

zoneHB=[]#各区块的Y轴[起始,终点]列表

xmax=0#上一区块结束黑点横坐标,这里是初始化

for i in range(10):

try:

x_fd,y_fd = detectFgPix(im,xmax)

# print(y_fd,x_fd)

xmax,xmin,ymax,ymin=cfs(im,x_fd,y_fd)

L = xmax - xmin

H = ymax - ymin

zoneL.append(L)

zoneWB.append([xmin,xmax])

zoneHB.append([ymin,ymax])

except TypeError:

return zoneL,zoneWB,zoneHB

return zoneL,zoneWB,zoneHB

def cutting_img(im,im_position,img,xoffset = 1,yoffset = 1):

filename = './out_img/' + img.split('.')[0]

# 识别出的字符个数

im_number = len(im_position[1])

# 切割字符

for i in range(im_number):

im_start_X = im_position[1][i][0] - xoffset

im_end_X = im_position[1][i][1] + xoffset

im_start_Y = im_position[2][i][0] - yoffset

im_end_Y = im_position[2][i][1] + yoffset

cropped = im[im_start_Y:im_end_Y, im_start_X:im_end_X]

cv2.imwrite(filename + '-cutting-' + str(i) + '.jpg',cropped)

def main():

filedir = './easy_img'

for file in os.listdir(filedir):

if fnmatch(file, '*.jpeg'):

img_name = file

# 自适应阈值二值化

im = _get_dynamic_binary_image(filedir, img_name)

# 去除边框

im = clear_border(im,img_name)

# 对图片进行干扰线降噪

im = interference_line(im,img_name)

# 对图片进行点降噪

im = interference_point(im,img_name)

# 切割的位置

im_position = CFS(im)

maxL = max(im_position[0])

minL = min(im_position[0])

# 如果有粘连字符,如果一个字符的长度过长就认为是粘连字符,并从中间进行切割

if(maxL > minL + minL * 0.7):

maxL_index = im_position[0].index(maxL)

minL_index = im_position[0].index(minL)

# 设置字符的宽度

im_position[0][maxL_index] = maxL // 2

im_position[0].insert(maxL_index + 1, maxL // 2)

# 设置字符X轴[起始,终点]位置

im_position[1][maxL_index][1] = im_position[1][maxL_index][0] + maxL // 2

im_position[1].insert(maxL_index + 1, [im_position[1][maxL_index][1] + 1, im_position[1][maxL_index][1] + 1 + maxL // 2])

# 设置字符的Y轴[起始,终点]位置

im_position[2].insert(maxL_index + 1, im_position[2][maxL_index])

# 切割字符,要想切得好就得配置参数,通常 1 or 2 就可以

cutting_img(im,im_position,img_name,1,1)

# 识别验证码

cutting_img_num = 0

for file in os.listdir('./out_img'):

str_img = ''

if fnmatch(file, '%s-cutting-*.jpg' % img_name.split('.')[0]):

cutting_img_num += 1

for i in range(cutting_img_num):

try:

file = './out_img/%s-cutting-%s.jpg' % (img_name.split('.')[0], i)

# 识别验证码

str_img = str_img + image_to_string(Image.open(file),lang = 'eng', config='-psm 10') #单个字符是10,一行文本是7

except Exception as err:

pass

print('切图:%s' % cutting_img_num)

print('识别为:%s' % str_img)

if __name__ == '__main__':

main()

以上就是python如何识别验证码的详细内容,更多请关注php中文网其它相关文章!

article_wechat2021.jpg?1111

本文原创发布php中文网,转载请注明出处,感谢您的尊重!

你可能感兴趣的:(python识别中文验证码)