人们在设置密码时候,总是倾向于好记的密码,于是常见的密码有一定的关联性。我们可以尝试让RNN学习常见的密码,摸索其中的规律,然后自动生成密码。本小节示例RNN生成常用密码。
1、数据集
使用WVS自带的密码字典作为训练集。约定密码长度不超过10,逐行读取密码文件中的每行密码,并将其序列化。
path = "../data/wvs-pass.txt"
maxlen = 10
file_lines = open(path, "r", encoding='utf-8').read()
X, Y, char_idx = \
string_to_semi_redundant_sequences(file_lines, seq_maxlen=maxlen, redun_step=3)
2、构建RNN模型
g = tflearn.input_data(shape=[None, maxlen, len(char_idx)])
g = tflearn.lstm(g, 512, return_seq=True)
g = tflearn.dropout(g, 0.5)
g = tflearn.lstm(g, 512)
g = tflearn.dropout(g, 0.5)
g = tflearn.fully_connected(g, len(char_idx), activation='softmax')
g = tflearn.regression(g, optimizer='adam', loss='categorical_crossentropy',
learning_rate=0.001)
3、实例化序列器
m = tflearn.SequenceGenerator(g, dictionary=char_idx,
seq_maxlen=maxlen,
clip_gradients=5.0,
checkpoint_path='wvs_passwd')
4、完整代码
from __future__ import absolute_import, division, print_function
import os
from six import moves
import ssl
import tflearn
from tflearn.data_utils import *
path = "../data/wvs-pass.txt"
maxlen = 10
file_lines = open(path, "r", encoding='utf-8').read()
X, Y, char_idx = \
string_to_semi_redundant_sequences(file_lines, seq_maxlen=maxlen, redun_step=3)
g = tflearn.input_data(shape=[None, maxlen, len(char_idx)])
g = tflearn.lstm(g, 512, return_seq=True)
g = tflearn.dropout(g, 0.5)
g = tflearn.lstm(g, 512)
g = tflearn.dropout(g, 0.5)
g = tflearn.fully_connected(g, len(char_idx), activation='softmax')
g = tflearn.regression(g, optimizer='adam', loss='categorical_crossentropy',
learning_rate=0.001)
m = tflearn.SequenceGenerator(g, dictionary=char_idx,
seq_maxlen=maxlen,
clip_gradients=5.0,
checkpoint_path='wvs_passwd')
for i in range(40):
seed = random_sequence_from_string(file_lines, maxlen)
m.fit(X, Y, validation_set=0.1, batch_size=128,
n_epoch=1, run_id='password')
print("-- TESTING...")
print("-- Test with temperature of 1.2 --")
print(m.generate(30, temperature=1.2, seq_seed=seed))
print("-- Test with temperature of 1.0 --")
print(m.generate(30, temperature=1.0, seq_seed=seed))
print("-- Test with temperature of 0.5 --")
print(m.generate(30, temperature=0.5, seq_seed=seed))
5、运行结果
......
Training Step: 13528 | total loss: 0.58454 | time: 316.845s
| Adam | epoch: 033 | loss: 0.58454 -- iter: 52224/52452
Training Step: 13529 | total loss: 0.58885 | time: 317.170s
| Adam | epoch: 033 | loss: 0.58885 -- iter: 52352/52452
Training Step: 13530 | total loss: 0.58233 | time: 334.266s
| Adam | epoch: 033 | loss: 0.58233 | val_loss: 0.36391 -- iter: 52452/52452
--
-- TESTING...
-- Test with temperature of 1.2 --
om
doidc.com
xiao
haining
jhidc
6588888
-- Test with temperature of 1.0 --
om
doidc.com
tama_.com
tomiin@367894321$
-- Test with temperature of 0.5 --
om
doidc.com
xiidc
idc02
idc0000
0000000