- ChatGPT大模型极简应用开发-目录
uncle_ll
#GPTchatgpt人工智能LLM大模型GPT
引言要理解ChatGPT,了解其背后的Transformer架构和GPT技术一路的演进则变得非常必要。ChatGPT背后的LLM技术使普通人能够通过自然语言完成过去只能由程序员通过编程语言实现的任务,这是一场巨大的变革。然而,人类通常容易高估技术的短期影响而低估长期影响。进一步学习关于LLM技术原理的论文、视频、图书等。在阅读这本书或者后续学习过程中,你有任何疑问都可以随时请教ChatGPT等工具
- Pytorch 三小时极限入门教程
power-辰南
人工智能深度学习pytorch人工智能
一、引言在当今的人工智能领域,深度学习占据了举足轻重的地位。而Pytorch作为一款广受欢迎的深度学习框架,以其简洁、灵活的特性,吸引了大量开发者投身其中。无论是科研人员探索前沿的神经网络架构,还是工程师将深度学习技术落地到实际项目,Pytorch都提供了强大的支持。本教程将带你从零基础开始,一步步深入了解Pytorch的核心知识,助你顺利踏上深度学习的征程。二、Pytorch基础环境搭建安装An
- Python机器学习之XGBoost从入门到实战(基本理论说明)
雪域枫蓝
PythonAtificialIntelligence机器学习python分布式
Xgboost从基础到实战XGBoost:eXtremeGradientBoosting*应用机器学习领域的一个强有力的工具*GradientBootingMachines(GBM)的优化表现,快速有效—深盟分布式机器学习开源平台(DistributedmachinelearningCommunity,DMLC)的分支—DMLC也开源流行的深度学习库mxnet*GBM:Machine:机器学习模型
- 【YOLOv8杂草作物目标检测】
stsdddd
YOLO目标检测目标检测YOLO目标检测人工智能
YOLOv8杂草目标检测算法介绍模型和数据集下载算法介绍YOLOv8在禾本科杂草目标检测方面有显著的应用和效果。以下是一些关键信息的总结:农作物幼苗与杂草检测系统:基于YOLOv8深度学习框架,通过2822张图片训练了一个目标检测模型,用于检测田间的农作物幼苗与杂草对象。该系统支持图片、视频以及摄像头进行目标检测,并能保存检测结果。系统界面可实时显示目标位置、目标总数、置信度、用时等信息。YOLO
- 深度学习(1)
浅忆へ梦微凉
深度学习人工智能深度学习学习方法python
一、torch的安装基于直接设备情况,选择合适的torch版本,有显卡的建议安装GPU版本,可以通过nvidia-smi命令来查看显卡驱动的版本,在官网中根据cuda版本,选择合适的版本号,下面是安装示例代码GPU:pipinstalltorch==2.5.0torchvision==0.20.0torchaudio==2.5.0--index-urlhttps://download.pytorc
- nlp培训重点-3
heine162
自然语言处理人工智能
1.文本匹配分类:loader:#-*-coding:utf-8-*-importjsonimportreimportosimporttorchimportrandomimportloggingfromtorch.utils.dataimportDataset,DataLoaderfromcollectionsimportdefaultdictfromtransformersimportBertT
- 深度学习常用格式转化脚本xml2yolo/coco2yolo/bdd2yolo/frame2video等
qq1309399183
计算机视觉实战项目集合深度学习人工智能格式转化脚本voc2yolo格式转化数据集格式转换xml2yolococo2yolo
文章目录1.**数据集格式转换脚本**`coco2yolo.py`示例注释:注释说明:`xml2yolo.py`示例注释:注释说明:2.**数据集可视化与统计**`vis_yolo_files.py`示例注释:注释说明:3.**其他工具脚本**`frames2video.py`示例注释:注释说明:该项目提供了一系列用于深度学习的数据处理工具,主要功能包括:数据集格式转换:提供多种脚本,将不同格式的
- LLMs,即大型语言模型
maopig
AI语言模型人工智能自然语言处理
LLMs,即大型语言模型,是一类基于深度学习的人工智能模型,它们通过海量的数据和大量的计算资源进行训练,可以理解和生成自然语言。LLMs的核心架构是Transformer,其关键在于自注意力机制,使得模型能够同时对输入的所有位置进行“关注”,从而更好地捕捉长距离的语义依赖关系。LLMs在众多领域都有广泛的应用,如自然语言理解(NLU),语言生成,以及语音识别和合成等。例如,它们能够理解人类的语言
- 第79期 | GPTSecurity周报
云起无垠
GPTSecurityAIGCgpt
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.TrojanWhi
- 第60期 | GPTSecurity周报
云起无垠
GPTSecurity人工智能语言模型网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.映射你的模型:评估
- 【LLM】大语言模型(LLMs)
林九生
人工智能语言模型人工智能自然语言处理
大型语言模型(LLMs)1.什么是大型语言模型?大型语言模型(LargeLanguageModel,LLM)是基于深度学习的自然语言处理模型,能够理解和生成自然语言文本。它们通过在大规模文本数据上进行训练,学习语言的语法、语义和各种语言特征,从而可以执行诸如文本生成、翻译、总结、问答等多种语言任务。以下是大型语言模型的定义和基本原理:1.1定义大型语言模型是由大量参数组成的神经网络,这些参数通过在
- 全新 Hopper 架构的Transformer 引擎有什么特点?
扫地的小何尚
人工智能
Transformer引擎是全新Hopper架构的一部分,将显著提升AI性能和功能,并助力在几天或几小时内训练大型模型。Transformer模型是当今广泛使用的语言模型(例如asBERT和GPT-3)的支柱。Transformer模型最初针对自然语言处理用例而开发,但因其通用性,现在逐步应用于计算机视觉、药物研发等领域。与此同时,模型大小不断呈指数级增长,现在已达到数万亿个参数。由于计算量巨大,
- BERT详解
comli_cn
大模型笔记bert人工智能深度学习
1.背景结构1.1基础知识BERT(BidirectionalEncoderRepresentationsfromTransformers)是谷歌提出,作为一个Word2Vec的替代者,其在NLP领域的11个方向大幅刷新了精度,可以说是前几年来自残差网络最优突破性的一项技术了。论文的主要特点以下几点:使用了双向Transformer作为算法的主要框架,之前的模型是从左向右输入一个文本序列,或者将l
- 1.4走向不同:GPT 与 BERT 的选择——两大NLP模型的深度解析
少林码僧
AI大模型应用实战专栏自然语言处理gptbert
走向不同:GPT与BERT的选择——两大NLP模型的深度解析在自然语言处理(NLP)领域,GPT(GenerativePretrainedTransformer)和BERT(BidirectionalEncoderRepresentationsfromTransformers)无疑是最具代表性和影响力的两个模型。它们都基于Transformer架构,但在设计理念、任务应用和训练方式等方面存在显著差
- 第83期 | GPTSecurity周报
云起无垠
GPTSecurity人工智能网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.混乱中建立秩序:人
- NVIDIA Hopper 架构深入
RZer
硬件工程架构NVIDIA
在2022年NVIDIAGTC主题演讲中,NVIDIA首席执行官黄仁勋介绍了基于全新NVIDIAHopperGPU架构的全新NVIDIAH100TensorCoreGPU。文章目录前言一、NVIDIAH100TensorCoreGPU简介二、NVIDIAH100GPU主要功能概述1.新的流式多处理器(SM)具有许多性能和效率改进。主要新功能包括:2.新的transformer引擎结合使用软件和定制
- 【Python】已解决:ModuleNotFoundError: No module named ‘sklearn‘
屿小夏
pythonsklearn人工智能
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 使用神经网络拟合6项参数
Andrew_Xzw
神经网络人工智能深度学习开发语言机器学习python
使用神经网络拟合6项参数1.数据预处理1.1添加参数解析1.2数据预处理逻辑1.3数据归一化及划分1.4数据标签处理逻辑1.5数据转torch2.定义model2.1CNN_LSTM2.2Transformer3.定义train脚本3.1loss和optimizer3.2train3.3predict1.数据预处理1.1添加参数解析为了方便管理模型和训练等参数,统一用参数解析。defparse_a
- 如何快速在Windows 10 + Anaconda 3 中使用Mxnet及gluon
qianchess
mxnet使用mxnetwin10anacondagluon人工智能
如何快速在Windows10+Anaconda3中使用Mxnet及gluon网络上Mxnet的安装以及使用方法很多,自从其作者之一李沐推出了基于Mxnet的深度学习课程之后,我也尝试着去使用了一下Mxnet。首先第一步就是在自己的系统中安装Mxnet及其相关组建。现在的Mxnet常常会跟其虚拟环境Gluon结合在一起,所以下文就一起阐述一下,顺便记录一下自己踩的坑。注意本文的大部分内容都可以在官网
- 3D UNet和Swin-UNETR
学無芷境
计算机视觉
3DUNet和Swin-UNETR都是用于医学图像分析的深度学习网络,它们对三维(3D)数据进行特征提取和分割。3DUNet3DUNet是UNet架构的一个变体,专门设计用于处理三维医学图像数据。UNet最初是为二维(2D)图像分割任务设计的,具有典型的编码器-解码器结构。3DUNet扩展了这种架构,以便更好地处理具有深度信息的体积数据,如CT或MRI扫描。主要特点:编码器:逐渐下采样图像,提取并
- 推荐3D UNet实现:深度学习3D体素数据语义分割的利器!
滑辰煦Marc
推荐3DUNet实现:深度学习3D体素数据语义分割的利器!去发现同类优质开源项目:https://gitcode.com/在这个快速发展的深度学习时代,3DUNet已经成为3D图像处理领域中不可或缺的工具,尤其在医疗影像分析和3D物体识别等任务上展现出强大的潜力。这个开源项目为我们提供了一个高效、灵活的3DUNet实现,支持Tensorflow、PyTorch和Chainer三种主流深度学习框架。
- 锐捷路由器网关RG-NBR6135-E和锐捷交换机 Ruijie Reyee RG-ES224GC 电脑登录web方法
zh7314
硬件工程
2025年1月17日22:29:35最近淘了点东西,准备在家里搞一套深度学习的服务器,先把网关和交换机搞到了锐捷路由器网关RG-NBR6135-E电脑登录web方法在拿到机器的时候,如果不是全新建议拿根牙签,差入reset5-10秒,灯光会全部闪几下,重置机器,因为有些机器会配置的ip和网段无法访问默认的web服务ip,在机器上面的默认配置单配置参考:https://baijiahao.baidu
- PyTorch机器学习与深度学习技术方法
Teacher.chenchong
机器学习python开发语言
近年来,随着AlphaGo、无人驾驶汽车、医学影像智慧辅助诊疗、ImageNet竞赛等热点事件的发生,人工智能迎来了新一轮的发展浪潮。尤其是深度学习技术,在许多行业都取得了颠覆性的成果。另外,近年来,Pytorch深度学习框架受到越来越多科研人员的关注和喜爱。Python基础知识串讲1、Python环境搭建(Python软件下载、安装与版本选择;PyCharm下载、安装;Python之HelloW
- 深度学习模块C2f代码详解
你是狒狒吗
目标检测人工智能计算机视觉pytorchYOLO神经网络
C2f是一个用于构建卷积神经网络(CNN)的模块,特别是在YOLOv5和YOLOv8等目标检测模型中。这个模块是一个改进的CSP(CrossStagePartial)Bottleneck结构,旨在提高计算效率和特征提取能力。下面是对C2f类的详细解释:类定义和初始化Python复制classC2f(nn.Module):“”“FasterImplementationofCSPBottleneckw
- 华为 Ascend 平台 YOLOv5 目标检测推理教程
Lunar*
目标检测华为YOLO目标检测
1.背景介绍随着人工智能技术的快速发展,目标检测在智能安防、自动驾驶、工业检测等领域中扮演了重要角色。YOLOv5是一种高效的目标检测模型,凭借其速度和精度的平衡广受欢迎。华为Ascend推理框架(ACL)是AscendCANN软件栈的核心组件,专为AscendAI加速硬件(如Atlas300I)设计,可实现高性能的深度学习推理。在本文中,我们将介绍如何基于华为AscendACL推理框架对YOLO
- 机器学习和深度学习的概念
你好呀我是裤裤
深度学习笔记机器学习深度学习人工智能
MachineLearning机器学习,可以看作是找一个函数。这个函数是人类找不到的,所以交给机器来找。DifferenttypesofFunctions**Regression:**函数的输出是一个数值forexample:**Classification:**给出选项,让机器去选择。forexample:检测一个邮件是不是垃圾文件,就可以通过这个来做。选项是两个:垃圾文件or非垃圾文件。下面,
- Pytorch实现:LSTM-火灾温度预测
骑猪玩狗
pytorchlstm人工智能
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊前期工作语言环境:Python3.9.18编译器:JupyterLab深度学习环境:Pytorch1.12.11.设置GPUimporttorchimporttorch.nnasnnimporttorchvisionfromtorchvisionimporttransforms,datasetsimportos,PIL,pathlibde
- 深度学习项目--基于LSTM的火灾预测研究(pytorch实现)
羊小猪~~
RNNLSTM神经网络案例机器学习/数据分析案例深度学习lstmpytorch人工智能机器学习rnngru
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊前言LSTM模型一直是一个很经典的模型,这个模型当然也很复杂,一般需要先学习RNN、GRU模型之后再学,GRU、LSTM的模型讲解将在这两天发布更新,其中:深度学习基础–一文搞懂RNN深度学习基础–GRU学习笔记(李沐《动手学习深度学习》)这一篇:是基于LSTM模型火灾预测研究,讲述了如何构建时间数据、模型如何构建、pytorch中LST
- 每天五分钟深度学习框架pytorch:基于vgg块搭建VGG卷积神经网络
每天五分钟玩转人工智能
深度学习框架pytorch深度学习pytorchcnnVGG卷积神经网络
本文重点前面我们使用pytorch搭建了vgg块,本文我们使用vgg块搭建卷积神经网络VGG16,我们先来看一下vgg16的模型结构是什么样的:搭建vgg16importtorchfromtorchimportnndefvgg_block(num_convs,in_channels,out_channels):net=[nn.Conv2d(in_channels,out_channels,kern
- 深度学习 Pytorch 张量(Tensor)的创建和常用方法
白白糖
深度学习pytorchpython深度学习pytorch人工智能
1张量的基本创建及其类型和Numpy中的array一样,张量的本质也是结构化地组织了大量的数据。并且在实际操作中,张量的创建和基本功能也与其非常类似。1.1张量(Tensor)函数创建方法张量的最基本创建方法和Numpy中创建Array的格式一致。#Numpy创建数组importnumpyasnp#导入numpya=np.array([1,2,3])importtorch#首次使用,导入torch
- js动画html标签(持续更新中)
843977358
htmljs动画mediaopacity
1.jQuery 效果 - animate() 方法 改变 "div" 元素的高度: $(".btn1").click(function(){ $("#box").animate({height:"300px
- springMVC学习笔记
caoyong
springMVC
1、搭建开发环境
a>、添加jar文件,在ioc所需jar包的基础上添加spring-web.jar,spring-webmvc.jar
b>、在web.xml中配置前端控制器
<servlet>
&nbs
- POI中设置Excel单元格格式
107x
poistyle列宽合并单元格自动换行
引用:http://apps.hi.baidu.com/share/detail/17249059
POI中可能会用到一些需要设置EXCEL单元格格式的操作小结:
先获取工作薄对象:
HSSFWorkbook wb = new HSSFWorkbook();
HSSFSheet sheet = wb.createSheet();
HSSFCellStyle setBorder = wb.
- jquery 获取A href 触发js方法的this参数 无效的情况
一炮送你回车库
jquery
html如下:
<td class=\"bord-r-n bord-l-n c-333\">
<a class=\"table-icon edit\" onclick=\"editTrValues(this);\">修改</a>
</td>"
j
- md5
3213213333332132
MD5
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
public class MDFive {
public static void main(String[] args) {
String md5Str = "cq
- 完全卸载干净Oracle11g
sophia天雪
orale数据库卸载干净清理注册表
完全卸载干净Oracle11g
A、存在OUI卸载工具的情况下:
第一步:停用所有Oracle相关的已启动的服务;
第二步:找到OUI卸载工具:在“开始”菜单中找到“oracle_OraDb11g_home”文件夹中
&
- apache 的access.log 日志文件太大如何解决
darkranger
apache
CustomLog logs/access.log common 此写法导致日志数据一致自增变大。
直接注释上面的语法
#CustomLog logs/access.log common
增加:
CustomLog "|bin/rotatelogs.exe -l logs/access-%Y-%m-d.log 
- Hadoop单机模式环境搭建关键步骤
aijuans
分布式
Hadoop环境需要sshd服务一直开启,故,在服务器上需要按照ssh服务,以Ubuntu Linux为例,按照ssh服务如下:
sudo apt-get install ssh
sudo apt-get install rsync
编辑HADOOP_HOME/conf/hadoop-env.sh文件,将JAVA_HOME设置为Java
- PL/SQL DEVELOPER 使用的一些技巧
atongyeye
javasql
1 记住密码
这是个有争议的功能,因为记住密码会给带来数据安全的问题。 但假如是开发用的库,密码甚至可以和用户名相同,每次输入密码实在没什么意义,可以考虑让PLSQL Developer记住密码。 位置:Tools菜单--Preferences--Oracle--Logon HIstory--Store with password
2 特殊Copy
在SQL Window
- PHP:在对象上动态添加一个新的方法
bardo
方法动态添加闭包
有关在一个对象上动态添加方法,如果你来自Ruby语言或您熟悉这门语言,你已经知道它是什么...... Ruby提供给你一种方式来获得一个instancied对象,并给这个对象添加一个额外的方法。
好!不说Ruby了,让我们来谈谈PHP
PHP未提供一个“标准的方式”做这样的事情,这也是没有核心的一部分...
但无论如何,它并没有说我们不能做这样
- ThreadLocal与线程安全
bijian1013
javajava多线程threadLocal
首先来看一下线程安全问题产生的两个前提条件:
1.数据共享,多个线程访问同样的数据。
2.共享数据是可变的,多个线程对访问的共享数据作出了修改。
实例:
定义一个共享数据:
public static int a = 0;
- Tomcat 架包冲突解决
征客丶
tomcatWeb
环境:
Tomcat 7.0.6
win7 x64
错误表象:【我的冲突的架包是:catalina.jar 与 tomcat-catalina-7.0.61.jar 冲突,不知道其他架包冲突时是不是也报这个错误】
严重: End event threw exception
java.lang.NoSuchMethodException: org.apache.catalina.dep
- 【Scala三】分析Spark源代码总结的Scala语法一
bit1129
scala
Scala语法 1. classOf运算符
Scala中的classOf[T]是一个class对象,等价于Java的T.class,比如classOf[TextInputFormat]等价于TextInputFormat.class
2. 方法默认值
defaultMinPartitions就是一个默认值,类似C++的方法默认值
- java 线程池管理机制
BlueSkator
java线程池管理机制
编辑
Add
Tools
jdk线程池
一、引言
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
- 关于hql中使用本地sql函数的问题(问-答)
BreakingBad
HQL存储函数
转自于:http://www.iteye.com/problems/23775
问:
我在开发过程中,使用hql进行查询(mysql5)使用到了mysql自带的函数find_in_set()这个函数作为匹配字符串的来讲效率非常好,但是我直接把它写在hql语句里面(from ForumMemberInfo fm,ForumArea fa where find_in_set(fm.userId,f
- 读《研磨设计模式》-代码笔记-迭代器模式-Iterator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.Arrays;
import java.util.List;
/**
* Iterator模式提供一种方法顺序访问一个聚合对象中各个元素,而又不暴露该对象内部表示
*
* 个人觉得,为了不暴露该
- 常用SQL
chenjunt3
oraclesqlC++cC#
--NC建库
CREATE TABLESPACE NNC_DATA01 DATAFILE 'E:\oracle\product\10.2.0\oradata\orcl\nnc_data01.dbf' SIZE 500M AUTOEXTEND ON NEXT 50M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K ;
CREATE TABLESPA
- 数学是科学技术的语言
comsci
工作活动领域模型
从小学到大学都在学习数学,从小学开始了解数字的概念和背诵九九表到大学学习复变函数和离散数学,看起来好像掌握了这些数学知识,但是在工作中却很少真正用到这些知识,为什么?
最近在研究一种开源软件-CARROT2的源代码的时候,又一次感觉到数学在计算机技术中的不可动摇的基础作用,CARROT2是一种用于自动语言分类(聚类)的工具性软件,用JAVA语言编写,它
- Linux系统手动安装rzsz 软件包
daizj
linuxszrz
1、下载软件 rzsz-3.34.tar.gz。登录linux,用命令
wget http://freeware.sgi.com/source/rzsz/rzsz-3.48.tar.gz下载。
2、解压 tar zxvf rzsz-3.34.tar.gz
3、安装 cd rzsz-3.34 ; make posix 。注意:这个软件安装与常规的GNU软件不
- 读源码之:ArrayBlockingQueue
dieslrae
java
ArrayBlockingQueue是concurrent包提供的一个线程安全的队列,由一个数组来保存队列元素.通过
takeIndex和
putIndex来分别记录出队列和入队列的下标,以保证在出队列时
不进行元素移动.
//在出队列或者入队列的时候对takeIndex或者putIndex进行累加,如果已经到了数组末尾就又从0开始,保证数
- C语言学习九枚举的定义和应用
dcj3sjt126com
c
枚举的定义
# include <stdio.h>
enum WeekDay
{
MonDay, TuesDay, WednesDay, ThursDay, FriDay, SaturDay, SunDay
};
int main(void)
{
//int day; //day定义成int类型不合适
enum WeekDay day = Wedne
- Vagrant 三种网络配置详解
dcj3sjt126com
vagrant
Forwarded port
Private network
Public network
Vagrant 中一共有三种网络配置,下面我们将会详解三种网络配置各自优缺点。
端口映射(Forwarded port),顾名思义是指把宿主计算机的端口映射到虚拟机的某一个端口上,访问宿主计算机端口时,请求实际是被转发到虚拟机上指定端口的。Vagrantfile中设定语法为:
c
- 16.性能优化-完结
frank1234
性能优化
性能调优是一个宏大的工程,需要从宏观架构(比如拆分,冗余,读写分离,集群,缓存等), 软件设计(比如多线程并行化,选择合适的数据结构), 数据库设计层面(合理的表设计,汇总表,索引,分区,拆分,冗余等) 以及微观(软件的配置,SQL语句的编写,操作系统配置等)根据软件的应用场景做综合的考虑和权衡,并经验实际测试验证才能达到最优。
性能水很深, 笔者经验尚浅 ,赶脚也就了解了点皮毛而已,我觉得
- Word Search
hcx2013
search
Given a 2D board and a word, find if the word exists in the grid.
The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or ve
- Spring4新特性——Web开发的增强
jinnianshilongnian
springspring mvcspring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装配置tengine并设置开机启动
liuxingguome
centos
yum install gcc-c++
yum install pcre pcre-devel
yum install zlib zlib-devel
yum install openssl openssl-devel
Ubuntu上可以这样安装
sudo aptitude install libdmalloc-dev libcurl4-opens
- 第14章 工具函数(上)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Xelsius 2008 and SAP BW at a glance
blueoxygen
BOXelsius
Xelsius提供了丰富多样的数据连接方式,其中为SAP BW专属提供的是BICS。那么Xelsius的各种连接的优缺点比较以及Xelsius是如何直接连接到BEx Query的呢? 以下Wiki文章应该提供了全面的概览。
http://wiki.sdn.sap.com/wiki/display/BOBJ/Xcelsius+2008+and+SAP+NetWeaver+BW+Co
- oracle表空间相关
tongsh6
oracle
在oracle数据库中,一个用户对应一个表空间,当表空间不足时,可以采用增加表空间的数据文件容量,也可以增加数据文件,方法有如下几种:
1.给表空间增加数据文件
ALTER TABLESPACE "表空间的名字" ADD DATAFILE
'表空间的数据文件路径' SIZE 50M;
&nb
- .Net framework4.0安装失败
yangjuanjava
.netwindows
上午的.net framework 4.0,各种失败,查了好多答案,各种不靠谱,最后终于找到答案了
和Windows Update有关系,给目录名重命名一下再次安装,即安装成功了!
下载地址:http://www.microsoft.com/en-us/download/details.aspx?id=17113
方法:
1.运行cmd,输入net stop WuAuServ
2.点击开