PyTorch深度学习实践部分代码示例

Pytorch基础教程:
B站刘二大人视频


PyTorch深度学习实践

  • 线性模型
    • 1.穷举法
    • 2.梯度下降算法(贪心法)
    • 3.反向传播
    • 4.用PyTorch实现线性回归
    • 5.逻辑斯蒂回归
    • 6.处理多维特征输入
  • 神经网络
    • 1.全连接神经网络:PyTorch识别MNIST手写数字
    • 2.基础卷积神经网络 Basic CNN
    • 3.高级卷积神经网络 Advanced CNN
    • 4.基础循环神经网络 Basic RNN
    • 5.高级循环神经网络


线性模型

1.穷举法

参数w

import numpy as np
import matplotlib.pyplot as plt

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

def forward(x):
    return w * x

def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2

w_list = []
mse_list = []
for w in np.arange(0.0, 4.0, 0.1):
    print('w=', w)
    l_sum = 0
    for x_val, y_val in zip(x_data, y_data):
        y_pred_val = forward(x_val)
        loss_val = loss(x_val, y_val)
        l_sum += loss_val
        print('\t', x_val, y_val, y_pred_val, loss_val)
    print('MSE=', l_sum / 3)
    w_list.append(w)
    mse_list.append(l_sum / 3)

plt.plot(w_list, mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()

参数w,b

import numpy as np
import matplotlib.pyplot as plt

#这里设函数为y=3x+2
x_data = [1.0, 2.0, 3.0]
y_data = [5.0, 8.0, 11.0]

def forward(x):
    return x * w + b

def loss(x,y):
    y_pred = forward(x)
    return (y_pred-y) ** 2

mse_list = []
W = np.arange(0.0, 4.1, 0.1)
B = np.arange(0.0, 4.1, 0.1)
[w, b]=np.meshgrid(W, B)

l_sum = 0
for x_val, y_val in zip(x_data, y_data):
    y_pred_val = forward(x_val)
    print(y_pred_val)
    loss_val = loss(x_val, y_val)
    l_sum += loss_val

fig = plt.figure()
ax = plt.axes(projection="3d")
ax.plot_surface(w, b, l_sum / 3)
plt.show()

2.梯度下降算法(贪心法)

平均梯度下降

import matplotlib.pyplot as plt

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

w = 1.0

def forward(x):
    return x * w

#损失函数
def cost(xs, ys):
    cost = 0
    for x, y in zip(xs, ys):
        y_pred = forward(x)
        cost += (y_pred - y) ** 2
    return cost / len(xs)

#梯度
def gradient(xs, ys):
    grad = 0
    for x, y in zip(xs, ys):
        grad += 2 * x * (x * w - y)
    return grad / len(xs)

loss_list = []
print('Predict (before training)', 4, forward(4))
for epoch in range(100):
    cost_val = cost(x_data, y_data)
    grad_val = gradient(x_data, y_data)
    w -= 0.01 * grad_val
    print('Epoch:', epoch, 'w=', w, 'loss=', cost_val)
    loss_list.append(cost_val)
print('Predict (after training)', 4, forward(4))

plt.plot(range(100), loss_list)
plt.ylabel('Loss')
plt.xlabel('epoch')
plt.show()

随机梯度下降

import random

import matplotlib.pyplot as plt

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

w = 1.0

def forward(x):
    return x * w

#损失函数
def loss(xs, ys):
    cost = 0
    for x, y in zip(xs, ys):
        y_pred = forward(x)
        cost += (y_pred - y) ** 2
    return cost / len(xs)

#梯度
def gradient(x, y):
    return 2 * x * (x * w - y)

loss_list = []
print('Predict (before training)', 4, forward(4))
for epoch in range(100):
    #随机梯度下降
    rc = random.randrange(0, 3)
    x = x_data[rc]
    y = y_data[rc]
    grad = gradient(x, y)
    w -= 0.01 * grad
    print('\tgrad: ', x, y, grad)
    l = loss(x_data, y_data)
    print('Epoch:', epoch, 'w=', w, 'loss=', l)
    loss_list.append(l)
print('Predict (after training)', 4, forward(4))

plt.plot(range(100), loss_list)
plt.ylabel('Loss')
plt.xlabel('epoch')
plt.show()

3.反向传播

参数 w

import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

import torch
import matplotlib.pyplot as plt

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

w = torch.Tensor([1.0])
w.requires_grad = True

def forward(x):
    return x * w

#损失函数
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2

loss_list = []

print('predict (before training)', 4, forward(4).item())

for epoch in range(100):
    for x, y in zip(x_data, y_data):
        l = loss(x, y)
        l.backward()
        print('\tgrad:', x, y, w.grad.item())
        w.data -= 0.01 * w.grad.data

        w.grad.data.zero_()

    print('progress:', epoch, l.item())
    loss_list.append(l.item())

print('predict (after training)', 4, forward(4).item())
plt.plot(range(100), loss_list)
plt.ylabel('Loss')
plt.xlabel('epoch')
plt.show()

参数 w1 w2 b

import torch

x_data = [1.0, 2.0, 3.0]
y_data = [7.0, 15.0, 27.0]

w1 = torch.Tensor([1.0])
w2 = torch.Tensor([2.0])
b = torch.Tensor([1.0])

w1.requires_grad = True
w2.requires_grad = True
b.requires_grad = True

def forward(x):
    return w1 * (x ** 2) + w2 * x +b

def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2

print('predict (before training)', 4, forward(4).item())

for epoch in range(100):
    for x, y in zip(x_data, y_data):
        l = loss(x, y)
        l.backward()
        print('\tgrad:', x, y, w1.grad.item(), w2.grad.item(), b.grad.item())
        w1.data -= 0.01 * w1.grad.data
        w2.data -= 0.01 * w2.grad.data
        b.data -= 0.01 * b.grad.data

        w1.grad.data.zero_()
        w2.grad.data.zero_()
        b.grad.data.zero_()

    print('progress:', epoch, l.item())

print('predict (after training)', 4, forward(4).item())

4.用PyTorch实现线性回归

import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

import torch
import matplotlib.pyplot as plt

x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[2.0], [4.0], [6.0]])

class LinearModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel, self).__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        y_pred = self.linear(x)
        return y_pred

model = LinearModel()

criterion = torch.nn.MSELoss(size_average = False)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

loss_list = []
for epoch in range(100):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    loss_list.append(loss.item())

print('w= ', model.linear.weight.item())
print('b= ', model.linear.bias.item())

x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred= ', y_test.data)

plt.plot(range(100), loss_list)
plt.ylabel('Loss')
plt.xlabel('epoch')
plt.show()

5.逻辑斯蒂回归

import torch
import torch.nn.functional as F
#---1.准备数据集
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[0], [0], [1]])
#---2.设定模型
class LogisticRegressionModel(torch.nn.Module):
    def __init__(self):
        super(LogisticRegressionModel, self).__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        y_pred = F.sigmoid(self.linear(x))
        return y_pred
model = LogisticRegressionModel()
#---3.构造损失函数和训练器
criterion = torch.nn.BCELoss(size_average = False)
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)
#---4.训练循环
for epoch in range(1000):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

6.处理多维特征输入

其实是3层神经网络

import torch
import numpy as np

#---1.Prepare dataset
xy = np.loadtxt('./data/diabetes.csv.gz', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:, :-1])
y_data = torch.from_numpy((xy[:, [-1]]))

#---2.Design model using Class
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear1 = torch.nn.Linear(8, 6)
        self.linear2 = torch.nn.Linear(6, 4)
        self.linear3 = torch.nn.Linear(4, 1)
        self.sigmoid = torch.nn.Sigmoid()

    def forward(self, x):
        x = self.sigmoid(self.linear1(x))
        x = self.sigmoid(self.linear2(x))
        x = self.sigmoid(self.linear3(x))
        return x

model = Model()

#---3.Construct Loss and Optimizer
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

#---4.Training Cycle
for epoch in range(100):
    #Forward
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())

    #Backward
    optimizer.zero_grad()
    loss.backward()

    #Update
    optimizer.step()

神经网络

1.全连接神经网络:PyTorch识别MNIST手写数字

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim

# 1. Prepare Dataset
batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307, ), (0.3081, ))
])

train_dataset = datasets.MNIST(root='../dataset/mnist',
                               train=True,
                               download=True,
                               transform=transform)
train_loader = DataLoader(train_dataset,
                          shuffle=True,
                          batch_size=batch_size)

test_dataset = datasets.MNIST(root='../dataset/mnist',
                               train=False,
                               download=True,
                               transform=transform)
test_loader = DataLoader(test_dataset,
                          shuffle=False,
                          batch_size=batch_size)

# 2. Design Model
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.l1 = torch.nn.Linear(784, 512)
        self.l2 = torch.nn.Linear(512, 256)
        self.l3 = torch.nn.Linear(256, 128)
        self.l4 = torch.nn.Linear(128, 64)
        self.l5 = torch.nn.Linear(64, 10)

    def forward(self, x):
        x = x.view(-1, 784)
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x)

model = Net()

# 3. Construct Loss and Optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

# 4. Train and Test
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()
        # forward, backward, update
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0

def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set: %d %%' % (100 * correct / total))

if __name__ == '__main__':
    for epoch in range(50):
        train(epoch)
        test()

2.基础卷积神经网络 Basic CNN

卷积层

import torch
in_channels, out_channels = 5, 10
width, height = 100, 100
kernel_size = 3
batch_size = 1

input = torch.randn(batch_size,
                    in_channels,
                    width,
                    height)

conv_layer = torch.nn.Conv2d(in_channels,
                             out_channels,
                             kernel_size=kernel_size)

output = conv_layer(input)

print(input.shape)
print(output.shape)
print(conv_layer.weight.shape)

padding=1

import torch

input = [3, 4, 6, 5, 7,
         2, 4, 6, 8, 2,
         1, 6, 7, 8, 4,
         9, 7, 4, 6, 2,
         3, 7, 5, 4, 1]
input = torch.Tensor(input).view(1, 1, 5, 5)

conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False)

kernel = torch.Tensor([1, 2, 3, 4, 5, 6, 7, 8, 9]).view(1, 1, 3, 3)
conv_layer.weight.data = kernel.data

output = conv_layer(input)
print(output)

步长=2

import torch

input = [3, 4, 6, 5, 7,
         2, 4, 6, 8, 2,
         1, 6, 7, 8, 4,
         9, 7, 4, 6, 2,
         3, 7, 5, 4, 1]
input = torch.Tensor(input).view(1, 1, 5, 5)

conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, stride=2, bias=False)

kernel = torch.Tensor([1, 2, 3, 4, 5, 6, 7, 8, 9]).view(1, 1, 3, 3)
conv_layer.weight.data = kernel.data

output = conv_layer(input)
print(output)

卷积神经网络:PyTorch识别MNIST手写数字

import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim

from matplotlib import pyplot as plt

# 1. Prepare Dataset
batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307, ), (0.3081, ))
])

train_dataset = datasets.MNIST(root='../dataset/mnist',
                               train=True,
                               download=True,
                               transform=transform)
train_loader = DataLoader(train_dataset,
                          shuffle=True,
                          batch_size=batch_size)

test_dataset = datasets.MNIST(root='../dataset/mnist',
                               train=False,
                               download=True,
                               transform=transform)
test_loader = DataLoader(test_dataset,
                          shuffle=False,
                          batch_size=batch_size)

# 2. Design Model
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)

    def forward(self, x):
        # Flatten data from (n, 1, 28, 28) to (n, 784)
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1)
        x = self.fc(x)
        return x

model = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)

# 3. Construct Loss and Optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

# 4. Train and Test
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()
        # forward, backward, update
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0

def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set: %d %%' % (100 * correct / total))
    return correct / total

if __name__ == '__main__':
    acc_list_test = []
    for epoch in range(10):
        train(epoch)
        acc_test = test()
        acc_list_test.append(acc_test)

    plt.plot(acc_list_test)
    plt.xlabel('Epoch')
    plt.ylabel('Accuracy On TestSet')
    plt.show()

作业:尝试更复杂的CNN(3层卷积、3层池化、2层线性层),简单修改模型部分

# 2. Design Model
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=3)
        self.conv3 = torch.nn.Conv2d(20, 40, kernel_size=2)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc1 = torch.nn.Linear(160, 75)
        self.fc2 = torch.nn.Linear(75, 10)

    def forward(self, x):
        # Flatten data from (n, 1, 28, 28) to (n, 784)
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = F.relu(self.pooling(self.conv3(x)))
        x = x.view(batch_size, -1)
        x = self.fc1(x)
        x = self.fc2(x)
        return x

model = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)

3.高级卷积神经网络 Advanced CNN

PyTorch识别MNIST手写数字

GoogLeNet 引入Inception块

# 2. Design Model
class InceptionA(nn.Module):
    def __init__(self, in_channels):
        super(InceptionA, self).__init__()
        self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)

        self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)

        self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
        self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)

        self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)

    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch3x3 = self.branch3x3_3(branch3x3)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
        return torch.cat(outputs, dim=1)

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(88, 20, kernel_size=5)

        self.incep1 = InceptionA(in_channels=10)
        self.incep2 = InceptionA(in_channels=20)

        self.mp = nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(1408, 10)

    def forward(self, x):
        in_size = x.size(0)
        x = F.relu(self.mp(self.conv1(x)))
        x = self.incep1(x)
        x = F.relu(self.mp(self.conv2(x)))
        x = self.incep2(x)
        x = x.view(in_size, -1)
        x = self.fc(x)
        return x

简单的残差网络 Residual Network

# 2. Design Model
class ResidualBlock(nn.Module):
    def __init__(self, channels):
        super(ResidualBlock, self).__init__()
        self.channels = channels
        self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)

    def forward(self, x):
        y = F.relu(self.conv1(x))
        y = self.conv2(y)
        return F.relu(x + y)

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 16, kernel_size=5)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=5)
        self.mp = nn.MaxPool2d(2)

        self.rblock1 = ResidualBlock(16)
        self.rblock2 = ResidualBlock(32)

        self.fc = nn.Linear(512, 10)

    def forward(self, x):
        in_size = x.size(0)
        x = F.relu(self.mp(self.conv1(x)))
        x = self.rblock1(x)
        x = F.relu(self.mp(self.conv2(x)))
        x = self.rblock2(x)
        x = x.view(in_size, -1)
        x = self.fc(x)
        return x

训练10轮准确率可达99%

4.基础循环神经网络 Basic RNN

RNN Cell的实现

import torch

batch_size = 1
seq_len = 3
input_size = 4
hidden_size = 2

cell = torch.nn.RNNCell(input_size=input_size, hidden_size=hidden_size)

dataset = torch.randn(seq_len, batch_size, input_size)
hidden = torch.zeros(batch_size, hidden_size)

for idx, input in enumerate(dataset):
    print('=' * 20, idx, '=' * 20)
    print('Input size:', input.shape)
    print(input)

    hidden = cell(input, hidden)

    print('outputs size:', hidden.shape)
    print(hidden)

简单RNN, numLayers设置RNN层数

import torch

batch_size = 1
seq_len = 3
input_size = 4
hidden_size = 2
num_layers = 1

cell = torch.nn.RNN(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers)

inputs = torch.randn(seq_len, batch_size, input_size)
hidden = torch.zeros(num_layers, batch_size, hidden_size)

out, hidden = cell(inputs, hidden)

print('Output size:', out.shape)
print('Output:', out)
print('Hidden size:', hidden.shape)
print('Hidden:', hidden)

Example 1: 使用RNN Cell将"hello"转为"ohlol"

import torch

input_size = 4
hidden_size = 4
batch_size = 1

# Prepare Data
idx2char = ['e', 'h', 'l', 'o']
x_data = [1, 0, 2, 2, 3]
y_data = [3, 1, 2, 3, 2]

one_hot_lookup = [[1, 0, 0, 0],
                  [0, 1, 0, 0],
                  [0, 0, 1, 0],
                  [0, 0, 0, 1]]
x_one_hot = [one_hot_lookup[x] for x in x_data]

inputs = torch.Tensor(x_one_hot).view(-1, batch_size, input_size)
labels = torch.LongTensor(y_data).view(-1, 1)

# Design Model
class Model(torch.nn.Module):
    def __init__(self, input_size, hidden_size, batch_size):
        super(Model, self).__init__()
        self.batch_size = batch_size
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.rnncell = torch.nn.RNNCell(input_size=self.input_size, hidden_size=self.hidden_size)

    def forward(self, input, hidden):
        hidden = self.rnncell(input, hidden)
        return hidden

    def init_hidden(self):
        return torch.zeros(self.batch_size, self.hidden_size)

net = Model(input_size, hidden_size, batch_size)

# Loss and Optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.1)

# Training Cycle
for epoch in range(15):
    loss = 0
    optimizer.zero_grad()
    hidden = net.init_hidden()
    print('Predicted string: ', end='')
    for input, label in zip(inputs, labels):
        hidden = net(input, hidden)
        loss += criterion(hidden, label)
        _,idx = hidden.max(dim = 1)
        print(idx2char[idx.item()], end='')
    loss.backward()
    optimizer.step()
    print(', Epoch [%d/15] loss=%.4f' % (epoch+1, loss.item()))

Example 2: 使用RNN 将"hello"转为"ohlol"

import torch

input_size = 4
hidden_size = 4
num_layers = 1
batch_size = 1
seq_len = 5

# Prepare Data
idx2char = ['e', 'h', 'l', 'o']
x_data = [1, 0, 2, 2, 3]
y_data = [3, 1, 2, 3, 2]

one_hot_lookup = [[1, 0, 0, 0],
                  [0, 1, 0, 0],
                  [0, 0, 1, 0],
                  [0, 0, 0, 1]]
x_one_hot = [one_hot_lookup[x] for x in x_data]

inputs = torch.Tensor(x_one_hot).view(seq_len, batch_size, input_size)
labels = torch.LongTensor(y_data)

# Design Model
class Model(torch.nn.Module):
    def __init__(self, input_size, hidden_size, batch_size, num_layers=1):
        super(Model, self).__init__()
        self.num_layers = num_layers
        self.batch_size = batch_size
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.rnn = torch.nn.RNN(input_size=self.input_size, hidden_size=self.hidden_size, num_layers=num_layers)

    def forward(self, input):
        hidden = torch.zeros(self.num_layers, self.batch_size, self.hidden_size)
        out, _ = self.rnn(input, hidden)
        return out.view(-1, self.hidden_size)

net = Model(input_size, hidden_size, batch_size, num_layers)

# Loss and Optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.05)

# Training Cycle
for epoch in range(15):
    optimizer.zero_grad()
    outputs = net(inputs)
    loss = criterion(outputs, labels)
    loss.backward()
    optimizer.step()

    _, idx = outputs.max(dim=1)
    idx = idx.data.numpy()
    print('Predicted: ',''.join([idx2char[x] for x in idx]), end='')
    print(', Epoch [%d/15] loss=%.3f' % (epoch+1, loss.item()))

Example 3:加入嵌入层和线性层

import torch

num_class= 4
input_size = 4
hidden_size = 8
embedding_size = 10
num_layers = 2
batch_size = 1
seq_len = 5

# Prepare Data
idx2char = ['e', 'h', 'l', 'o']
x_data = [[1, 0, 2, 2, 3]]
y_data = [3, 1, 2, 3, 2]

inputs = torch.LongTensor(x_data)
labels = torch.LongTensor(y_data)

# Design Model
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.emb = torch.nn.Embedding(input_size, embedding_size)
        self.rnn = torch.nn.RNN(input_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers,batch_first=True)
        self.fc = torch.nn.Linear(hidden_size, num_class)

    def forward(self, x):
        hidden = torch.zeros(num_layers, x.size(0), hidden_size)
        x = self.emb(x)
        x, _ = self.rnn(x, hidden)
        x = self.fc(x)
        return x.view(-1, num_class)

net = Model()

# Loss and Optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.05)

# Training Cycle
for epoch in range(15):
    optimizer.zero_grad()
    outputs = net(inputs)
    loss = criterion(outputs, labels)
    loss.backward()
    optimizer.step()

    _, idx = outputs.max(dim=1)
    idx = idx.data.numpy()
    print('Predicted: ',''.join([idx2char[x] for x in idx]), end='')
    print(', Epoch [%d/15] loss=%.3f' % (epoch+1, loss.item()))

5.高级循环神经网络

使用RNN进行名字分类

import os
import time

os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

import math

import torch

import gzip
import csv

import matplotlib.pyplot as plt
import numpy as np
from torch.nn.utils.rnn import pack_padded_sequence
from torch.utils.data import Dataset, DataLoader

# Parameters
HIDDEN_SIZE = 100
BATCH_SIZE = 256
N_LAYER = 2
N_EPOCHS = 100
N_CHARS = 128
USE_GPU = True


# 1. Prepare Data
class NameDataset(Dataset):
    def __init__(self, is_train_set=True):
        filename = 'data/names_train.csv.gz' if is_train_set else 'data/names_test.csv.gz'
        with gzip.open(filename, 'rt') as f:
            reader = csv.reader(f)
            rows = list(reader)
        self.names = [row[0] for row in rows]
        self.len = len(self.names)
        self.countries = [row[1] for row in rows]
        self.country_list = list(sorted(set(self.countries)))
        self.country_dict = self.getCountryDict()
        self.country_num = len(self.country_list)

    def __getitem__(self, index):
        return self.names[index], self.country_dict[self.countries[index]]

    def __len__(self):
        return self.len

    def getCountryDict(self):
        country_dict = dict()
        for idx, country_name in enumerate(self.country_list, 0):
            country_dict[country_name] = idx
        return country_dict

    def idx2country(self, index):
        return self.country_list[index]

    def getCountriesNum(self):
        return self.country_num

trainset = NameDataset(is_train_set=True)
trainloader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
testset = NameDataset(is_train_set=False)
testloader = DataLoader(testset, batch_size=BATCH_SIZE, shuffle=False)

N_COUNTRY = trainset.getCountriesNum()

# 2. Design Model
def create_tensor(tensor):
    if USE_GPU:
        device = torch.device("cuda:0")
        tensor = tensor.to(device)
        return tensor

class RNNClassifier(torch.nn.Module):
    def __init__(self, input_size, hidden_size, output_size, n_layers=1, bidirectional=True):
        super(RNNClassifier, self).__init__()
        self.hidden_size = hidden_size
        self.n_layers = n_layers
        self.n_directions = 2 if bidirectional else 1

        self.embedding = torch.nn.Embedding(input_size, hidden_size)
        self.gru = torch.nn.GRU(hidden_size, hidden_size, n_layers, bidirectional=bidirectional)
        self.fc = torch.nn.Linear(hidden_size * self.n_directions, output_size)

    def _init_hidden(self, batch_size):
        hidden = torch.zeros(self.n_layers * self.n_directions, batch_size, self.hidden_size)
        return create_tensor(hidden)

    def forward(self, input, seq_lengths):
        # input shape: B X S -> S X B
        input = input.t()
        batch_size = input.size(1)

        hidden = self._init_hidden(batch_size)
        embedding = self.embedding(input)

        #pack them up
        gru_input = pack_padded_sequence(embedding, seq_lengths)

        output, hidden = self.gru(gru_input, hidden)
        if self.n_directions == 2:
            hidden_cat = torch.cat([hidden[-1], hidden[-2]], dim=1)
        else:
            hidden_cat = hidden[-1]
        fc_output = self.fc(hidden_cat)
        return fc_output

# Convert name to tensor
def name2list(name):
    arr = [ord(c) for c in name]
    return arr, len(arr)

def make_tensors(names, countries):
    sequences_and_lengths = [name2list(name) for name in names]
    name_sequences = [sl[0] for sl in sequences_and_lengths]
    seq_lengths = torch.LongTensor([sl[1] for sl in sequences_and_lengths])
    countries = countries.long()

    # make tensor of name, BatchSize x SeqLen
    seq_tensor = torch.zeros(len(name_sequences), seq_lengths.max()).long()
    for idx, (seq, seq_len) in enumerate(zip(name_sequences, seq_lengths), 0):
        seq_tensor[idx, :seq_len] = torch.LongTensor(seq)
    # sort by length to use pack_padded_sequence
    seq_lengths, perm_idx = seq_lengths.sort(dim=0, descending=True)
    seq_tensor = seq_tensor[perm_idx]
    countries = countries[perm_idx]
    return create_tensor(seq_tensor), \
           create_tensor(seq_lengths), \
           create_tensor(countries)

# 3. Train and Test
def time_since(since):
    s = time.time() - since
    m = math.floor(s / 60)
    s -= m * 60
    return '%dm %ds' % (m, s)

def trainModel():
    total_loss = 0
    for i, (names, countries) in enumerate(trainloader, 1):
        inputs, seq_lengths, target = make_tensors(names, countries)
        output = classifier(inputs, seq_lengths)
        loss = criterion(output, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_loss += loss.item()
        if i % 10 == 0:
            print(f'[{time_since(start)}] Epoch {epoch} ', end='')
            print(f'[{i * len(inputs)}/{len(trainset)}] ', end='')
            print(f'loss={total_loss / (i * len(inputs))}')
    return total_loss

def testModel():
    correct = 0
    total = len(testset)
    print("evaluating trained model ...")
    with torch.no_grad():
        for i, (names, countries) in enumerate(testloader, 1):
            inputs, seq_lengths, target = make_tensors(names, countries)
            output = classifier(inputs, seq_lengths)
            pred = output.max(dim=1, keepdim=True)[1]
            correct += pred.eq(target.view_as(pred)).sum().item()

        percent = '%.2f' % (100 * correct / total)
        print(f'Test set: Accuracy {correct}/{total} {percent}%')

    return correct / total

if __name__ == '__main__':
    classifier = RNNClassifier(N_CHARS, HIDDEN_SIZE, N_COUNTRY, N_LAYER)
    if USE_GPU:
        device= torch.device("cuda:0")
        classifier.to(device)

    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(classifier.parameters(), lr=0.001)

    start = time.time()
    print("Training for %d epochs..." % N_EPOCHS)
    acc_list = []
    for epoch in range(1, N_EPOCHS + 1):
        #Train cycle
        trainModel()
        acc = testModel()
        acc_list.append(acc)


epoch = np.arange(1, len(acc_list) + 1, 1)
acc_list = np.array(acc_list)
plt.plot(epoch, acc_list)
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.grid()
plt.show()

你可能感兴趣的:(深度学习,pytorch,python,1024程序员节)