用python实现基于PANN(retrained Audio Neural Networks)的声音检测方法

用python实现基于PANN的声音事件检测方法

1.PANN
国外论文:《PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition》

在本文中,我们提出了在大规模音频集数据集上训练的预先训练的音频神经网络(PANNs)。这些面板被转移到其他与音频相关的任务中。我们研究了由各种卷积神经网络建模的粒子的性能和计算复杂度。我们提出了一种称为波图-Logmel-CNN的架构,使用Log-mel谱图和波形作为输入特征。我们最好的PANN系统在音频集标签上实现了最先进的平均平均精度(mAP)为0.439,优于之前最好的0.392系统。我们将PANNs转移到六个音频模式识别任务中,并演示了在其中一些任务中最先进的性能。我们已经发布了PANNs的源代码和预训练的模型:

GitHub代码地址:https://github.com/qiuqiangkong/audioset_tagging_cnn

需要用到训练好的模型:Cnn14_DecisionLevelMax_mAP=0.385.pth

2.模型介绍
我们用的模型是CNN14架构
用python实现基于PANN(retrained Audio Neural Networks)的声音检测方法_第1张图片
3.具体代码

下载zip压缩文件
https://github.com/qiuqiangkong/audioset_tagging_cnn
创建你的项目保存以下文件
一部分在pytorch文件夹,另一部分utils文件夹
wav文件自己准备或者用压缩包里面的
用python实现基于PANN(retrained Audio Neural Networks)的声音检测方法_第2张图片

修改inference.py文件,直接复制代码

import os
import sys

sys.path.insert(1, os.path.join(sys.path[0], '../utils'))
import numpy as np
import argparse
import librosa
import matplotlib.pyplot as plt
import torch

from utilities import create_folder, get_filename
from models import *
from pytorch_utils import move_data_to_device
import config


def audio_tagging(args):
    """Inference audio tagging result of an audio clip.
    """

    # Arugments & parameters
    sample_rate = args.sample_rate
    window_size = args.window_size
    hop_size = args.hop_size
    mel_bins = args.mel_bins
    fmin = args.fmin
    fmax = args.fmax
    model_type = args.model_type
    checkpoint_path = args.checkpoint_path
    audio_path = args.audio_path
    device = torch.device('cuda') if args.cuda and torch.cuda.is_available() else torch.device('cpu')

    classes_num = config.classes_num
    labels = config.labels

    # Model
    Model = eval(model_type)
    model = Model(sample_rate=sample_rate, window_size=window_size,
                  hop_size=hop_size, mel_bins=mel_bins, fmin=fmin, fmax=fmax,
                  classes_num=classes_num)

    checkpoint = torch.load(checkpoint_path, map_location=device)
    model.load_state_dict(checkpoint['model'])

    # Parallel
    if 'cuda' in str(device):
        model.to(device)
        print('GPU number: {}'.format(torch.cuda.device_count()))
        model = torch.nn.DataParallel(model)
    else:
        print('Using CPU.')

    # Load audio
    (waveform, _) = librosa.core.load(audio_path, sr=sample_rate, mono=True)

    waveform = waveform[None, :]  # (1, audio_length)
    waveform = move_data_to_device(waveform, device)

    # Forward
    with torch.no_grad():
        model.eval()
        batch_output_dict = model(waveform, None)

    clipwise_output = batch_output_dict['clipwise_output'].data.cpu().numpy()[0]
    """(classes_num,)"""

    sorted_indexes = np.argsort(clipwise_output)[::-1]

    # Print audio tagging top probabilities
    for k in range(10):
        print('{}: {:.3f}'.format(np.array(labels)[sorted_indexes[k]],
                                  clipwise_output[sorted_indexes[k]]))

    # Print embedding
    if 'embedding' in batch_output_dict.keys():
        embedding = batch_output_dict['embedding'].data.cpu().numpy()[0]
        print('embedding: {}'.format(embedding.shape))

    return clipwise_output, labels


def sound_event_detection(args):
    """Inference sound event detection result of an audio clip.
    """

    # Arugments & parameters
    sample_rate = args.sample_rate
    window_size = args.window_size
    hop_size = args.hop_size
    mel_bins = args.mel_bins
    fmin = args.fmin
    fmax = args.fmax
    model_type = args.model_type
    checkpoint_path = args.checkpoint_path
    audio_path = args.audio_path
    device = torch.device('cuda') if args.cuda and torch.cuda.is_available() else torch.device('cpu')

    classes_num = config.classes_num
    labels = config.labels
    frames_per_second = sample_rate // hop_size

    # Paths
    fig_path = os.path.join('results', '{}.png'.format(get_filename(audio_path)))
    create_folder(os.path.dirname(fig_path))

    # Model
    Model = eval(model_type)
    model = Model(sample_rate=sample_rate, window_size=window_size,
                  hop_size=hop_size, mel_bins=mel_bins, fmin=fmin, fmax=fmax,
                  classes_num=classes_num)

    checkpoint = torch.load(checkpoint_path, map_location=device)
    model.load_state_dict(checkpoint['model'])

    # Parallel
    if 'cuda' in str(device):
        model.to(device)
        print('GPU number: {}'.format(torch.cuda.device_count()))
        model = torch.nn.DataParallel(model)
    else:
        print('Using CPU.')

    # Load audio
    (waveform, _) = librosa.core.load(audio_path, sr=sample_rate, mono=True)

    waveform = waveform[None, :]  # (1, audio_length)
    waveform = move_data_to_device(waveform, device)

    # Forward
    with torch.no_grad():
        model.eval()
        batch_output_dict = model(waveform, None)

    framewise_output = batch_output_dict['framewise_output'].data.cpu().numpy()[0]
    """(time_steps, classes_num)"""

    print('Sound event detection result (time_steps x classes_num): {}'.format(
        framewise_output.shape))

    sorted_indexes = np.argsort(np.max(framewise_output, axis=0))[::-1]

    top_k = 10  # Show top results
    top_result_mat = framewise_output[:, sorted_indexes[0: top_k]]
    """(time_steps, top_k)"""

    # Plot result    
    stft = librosa.core.stft(y=waveform[0].data.cpu().numpy(), n_fft=window_size,
                             hop_length=hop_size, window='hann', center=True)
    frames_num = stft.shape[-1]

    fig, axs = plt.subplots(2, 1, sharex=True, figsize=(10, 4))
    axs[0].matshow(np.log(np.abs(stft)), origin='lower', aspect='auto', cmap='jet')
    axs[0].set_ylabel('Frequency bins')
    axs[0].set_title('Log spectrogram')
    axs[1].matshow(top_result_mat.T, origin='upper', aspect='auto', cmap='jet', vmin=0, vmax=1)
    axs[1].xaxis.set_ticks(np.arange(0, frames_num, frames_per_second))
    axs[1].xaxis.set_ticklabels(np.arange(0, frames_num / frames_per_second))
    axs[1].yaxis.set_ticks(np.arange(0, top_k))
    axs[1].yaxis.set_ticklabels(np.array(labels)[sorted_indexes[0: top_k]])
    axs[1].yaxis.grid(color='k', linestyle='solid', linewidth=0.3, alpha=0.3)
    axs[1].set_xlabel('Seconds')
    axs[1].xaxis.set_ticks_position('bottom')

    plt.tight_layout()
    plt.savefig(fig_path)
    print('Save sound event detection visualization to {}'.format(fig_path))

    return framewise_output, labels


class Parser:
    def _init_(self, sample_rate, window_size, hop_size, mel_bins, fmin, fmax, model_type, checkpoint_path, audio_path,
               cuda):
        self.sample_rate = sample_rate
        self.window_size = window_size
        self.hop_size = hop_size
        self.mel_bins = mel_bins
        self.fmin = fmin
        self.fmax = fmax
        self.model_type = model_type
        self.checkpoint_path = checkpoint_path
        self.audio_path = audio_path
        self.cuda = cuda


if __name__ == '__main__':

    parser_at = Parser()
    parser_at.sample_rate = 32000
    parser_at.window_size = 1024
    parser_at.hop_size = 320
    parser_at.mel_bins = 64
    parser_at.fmin = 50
    parser_at.fmax = 14000
    parser_at.model_type = "Cnn14"
    parser_at.checkpoint_path = "Cnn14_mAP=0.431.pth"
    parser_at.audio_path = "test.wav"
    parser_at.cuda = False
    print("audio_tagging")
    #实现功能:检测声音标签
    audio_tagging(parser_at)

    parser_sed = Parser()
    parser_sed.sample_rate = 32000
    parser_sed.window_size = 1024
    parser_sed.hop_size = 320
    parser_sed.mel_bins = 64
    parser_sed.fmin = 50
    parser_sed.fmax = 14000
    parser_sed.model_type = "Cnn14_DecisionLevelMax"
    parser_sed.checkpoint_path = "Cnn14_DecisionLevelMax_mAP=0.385.pth"
    parser_sed.audio_path = "test.wav"
    parser_sed.cuda = False
    print("sound_event_detection")
    #实现功能:检测声音事件
    sound_event_detection(parser_sed)

③实现效果
功能1实现效果
小数:可信度
用python实现基于PANN(retrained Audio Neural Networks)的声音检测方法_第3张图片
功能2实现效果
如图所示,蓝色越浅,可信度越高
用python实现基于PANN(retrained Audio Neural Networks)的声音检测方法_第4张图片
4.拓展实现
①提取需要的声音,来做语音识别、声纹识别之类的
②提取需要的声音,重新训练,训练检测单一种类:人声,鸟声,猫叫声等,用cnn10或者cnn6模型训练,提高检测速率。

你可能感兴趣的:(python,信号处理,python,声音检测)