域扩张(群论笔记)

域扩张

标签(空格分隔): field extension 域扩张


Q ( 2 3 ) \mathbb{Q(\sqrt[3]{2})} Q(32 )不是正规扩张

Q ( 2 3 , ω ) \mathbb{Q(\sqrt[3]{2}, \omega)} Q(32 ,ω)是正规扩张

ω = − 1 + 3 i 2 \omega=\frac{-1+\sqrt{3}i}{2} ω=21+3 i

相得

Q ( 2 , 3 ) / Q ( 2 ) = { 1 , 3 } \mathbb{Q}(\sqrt{2}, \sqrt{3})/ \mathbb{Q}(\sqrt{2}) = \{1,\sqrt{3}\} Q(2 ,3 )/Q(2 )={1,3 }

Q ( 2 ) / Q = { 1 , 2 } \mathbb{Q}(\sqrt{2})/ \mathbb{Q} = \{1,\sqrt{2}\} Q(2 )/Q={1,2 }

Q ( 2 , 3 ) / Q = { 1 , 2 , 3 , 6 } \mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}= \{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\} Q(2 ,3 )/Q={1,2 ,3 ,6 }

Q ( 2 , 3 3 ) / Q ( 2 ) = { 1 , 3 3 , 3 2 3 } \mathbb{Q}(\sqrt{2}, \sqrt[3]{3})/ \mathbb{Q}(\sqrt{2}) = \{1,\sqrt[3]{3},\sqrt[3]{3^2}\} Q(2 ,33 )/Q(2 )={1,33 ,332 }

Q ( 2 ) / Q = { 1 , 2 } \mathbb{Q}(\sqrt{2})/ \mathbb{Q} = \{1,\sqrt{2}\} Q(2 )/Q={1,2 }

Q ( 2 , 3 3 ) / Q = { 1 , 3 3 , 3 2 3 , 2 , 2 3 3 , 2 3 2 3 } \mathbb{Q}(\sqrt{2}, \sqrt[3]{3})/ \mathbb{Q} = \{1,\sqrt[3]{3},\sqrt[3]{3^2}, \sqrt{2},\sqrt{2}\sqrt[3]{3},\sqrt{2}\sqrt[3]{3^2}\} Q(2 ,33 )/Q={1,33 ,332 ,2 ,2 33 ,2 332 }

共轭元

正规扩张每个元素的共轭元都包含在其中,相应的Galous群上就是共轭作用,而共轭作用不动的子群就是正规子群
6 + 10 + 15 \sqrt{6}+\sqrt{10}+\sqrt{15} 6 +10 +15 极小多项式 ϕ \phi ϕ

σ = { σ 1 ( 2 , 3 , 5 ) , σ 2 ( 2 , 3 , − 5 ) , σ 3 ( 2 , − 3 , 5 ) , σ 4 ( 2 , − 3 , − 5 ) , σ 5 ( − 2 , 3 , 5 ) , σ 6 ( − 2 , 3 , − 5 ) , σ 7 ( − 2 , − 3 , 5 ) , σ 8 ( − 2 , − 3 , − 5 ) } \sigma=\{ \sigma_1(\sqrt{2},\sqrt{3},\sqrt{5}),\\ \sigma_2(\sqrt{2},\sqrt{3},-\sqrt{5}),\\ \sigma_3(\sqrt{2},-\sqrt{3},\sqrt{5}),\\ \sigma_4(\sqrt{2},-\sqrt{3},-\sqrt{5}),\\ \sigma_5(-\sqrt{2},\sqrt{3},\sqrt{5}),\\ \sigma_6(-\sqrt{2},\sqrt{3},-\sqrt{5}),\\ \sigma_7(-\sqrt{2},-\sqrt{3},\sqrt{5}),\\ \sigma_8(-\sqrt{2},-\sqrt{3},-\sqrt{5}) \} σ={σ1(2 ,3 ,5 ),σ2(2 ,3 ,5 ),σ3(2 ,3 ,5 ),σ4(2 ,3 ,5 ),σ5(2 ,3 ,5 ),σ6(2 ,3 ,5 ),σ7(2 ,3 ,5 ),σ8(2 ,3 ,5 )}

θ = 6 + 10 + 15 \theta=\sqrt{6}+\sqrt{10}+\sqrt{15} θ=6 +10 +15
σ 1 θ = σ 8 θ = 6 + 10 + 15 \sigma_1\theta = \sigma_8\theta=\sqrt{6}+\sqrt{10}+\sqrt{15} σ1θ=σ8θ=6 +10 +15
σ 2 θ = σ 7 θ = 6 − 10 − 15 \sigma_2\theta = \sigma_7\theta=\sqrt{6}-\sqrt{10}-\sqrt{15} σ2θ=σ7θ=6 10 15
σ 3 θ = σ 6 θ = − 6 + 10 − 15 \sigma_3\theta = \sigma_6\theta=-\sqrt{6}+\sqrt{10}-\sqrt{15} σ3θ=σ6θ=6 +10 15
σ 4 θ = σ 5 θ = − 6 − 10 + 15 \sigma_4\theta = \sigma_5\theta=-\sqrt{6}-\sqrt{10}+\sqrt{15} σ4θ=σ5θ=6 10 +15

ϕ = ( x − σ 1 θ ) ( x − σ 2 θ ) ( x − σ 3 θ ) ( x − σ 4 θ ) = x 4 − 62 x 2 − 240 x − 239 \phi = (x-\sigma_1\theta)(x-\sigma_2\theta)(x-\sigma_3\theta)(x-\sigma_4\theta)\\ =x^4-62x^2-240x-239 ϕ=(xσ1θ)(xσ2θ)(xσ3θ)(xσ4θ)=x462x2240x239

G a l ( Q ( 2 , 3 , 5 ) / Q ) Gal(\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})/\mathbb{Q}) Gal(Q(2 ,3 ,5 )/Q)

你可能感兴趣的:(算法,机器学习,python)