深度学习算法数据-网络-算法总结

深度学习算法数据-网络-算法总结

1 数据集大全

通用2D检测数据集、交通标志、车道线、行人检测、3D目标检测、ReID等数据集
深度学习算法数据-网络-算法总结_第1张图片

2 Backbone知识汇总

该部分主要是针对常见CNN结构以及ViT结构进行汇总,同时也包含轻量化CNN Backbone以及轻量化Transformer模型等高性能模型;
深度学习算法数据-网络-算法总结_第2张图片

3 目标检测

该部分主要是对 Anchor-based、Anchor-free、One-Stage、Ttwo-Stage、超全YOLO系列、小目标检测、多任务模型、长尾分布、误检消除、难例挖掘、定位精度优化等内容;
深度学习算法数据-网络-算法总结_第3张图片

4 图像分割

该部分主要是对于语义分割、实例分割、全景分割等任务的知识汇总经验总结;
深度学习算法数据-网络-算法总结_第4张图片

5 车道线检测

该部分主要是从范式方向总结和收集基于关键点、分割、分类、检测方案的车道线模型。

深度学习算法数据-网络-算法总结_第5张图片

6 目标跟踪

该部分针对Tracking-by-detection和end2end方法进行全面展开阐述,后续更会加入具有实践落地变速情况下的跟踪系统;

深度学习算法数据-网络-算法总结_第6张图片

7 3D目标检测

该部分主要是总结和归纳基于点、体素、多视角数据的3D检测方案;

深度学习算法数据-网络-算法总结_第7张图片

8 模型部署

具体主要是包括TensorRT、NCNN、OpenCV、MNN以及OpenVINO等方案部署检测、分割、关键点、分类模型实战;

深度学习算法数据-网络-算法总结_第8张图片

你可能感兴趣的:(深度学习语义分割评价,深度学习评价指标,目标检测指标评价,深度学习,计算机视觉,python)