- 使用TensorFlow、OpenCV和Pygame实现图像处理与游戏开发
UwoiGit
tensorflowopencvpygame
在本篇文章中,我们将介绍如何结合使用TensorFlow、OpenCV和Pygame来进行图像处理和游戏开发。这三个工具在机器学习、计算机视觉和游戏开发领域都非常流行,并且它们的结合可以提供强大的功能和无限的创造力。我们将逐步介绍如何安装和配置这些工具,并提供相关的源代码示例。安装TensorFlowTensorFlow是一个基于数据流图的开源机器学习框架,提供了丰富的工具和库来构建和训练各种深度
- Deepseek的本地化部署软件工具包
哈拉少12
人工智能
选择模型版本参数规模硬件要求(最低)适用场景1.5B/7B8GB内存,无专用GPU文本处理、简单问答14B16GB内存+12GB显存代码生成、逻辑推理32B/70B24GB显存+32GB内存企业级复杂任务执行命令:ollamarundeepseek-r1:14b(以14B为例)。配置环境变量新增用户变量:OLLAMA_HOST=0.0.0.0OLLAMA_ORIGINS=*重启Ollama服务使配
- 芯片:CPU和GPU有什么区别?
InnoLink_1024
AGI人工智能人工智能aiagigpu算力
CPU(中央处理器)和GPU(图形处理单元)是计算机系统中两种非常重要的处理器,它们各自有不同的设计理念、架构特点以及应用领域。下面是它们之间的一些主要差异:1.设计目的与应用领域CPU:设计目的是为了处理广泛的计算任务,包括操作系统管理、应用程序运行和基本的输入输出处理等。它处理的是复杂的、通用的计算任务,通常包括控制逻辑、内存管理等。GPU:设计目的是为了处理图形和并行计算任务。最初是为图形渲
- 使用LoRA微调LLaMA3
想胖的壮壮
深度学习人工智能
使用LoRA微调LLaMA3的案例案例概述在这个案例中,我们将使用LoRA微调LLaMA3模型,进行一个文本分类任务。我们将使用HuggingFace的Transformers库来完成这个过程。步骤一:环境搭建安装必要的Python包pipinstalltransformersdatasetstorch配置GPU环境确保你的环境中配置了CUDA和cuDNN,并验证GPU是否可用。importtor
- nvidia_uvm 被占用,nvidia-smi 卡死
guganly
数据中心运维实战chrome前端服务器运维linux
系统可以识别到多块NVIDIAGPU,且驱动模块已加载,但nvidia_uvm被占用,nvidia-smi卡死,通常是由于以下原因导致:可能原因GPU资源被占用某些进程正在使用NVIDIA驱动,导致模块无法卸载。驱动损坏或加载异常NVIDIA内核模块部分加载,但驱动未能正确工作。GPU挖矿或AI任务未释放某些后台程序未正常退出,导致GPU资源无法被释放。PCIe通道异常多卡环境可能由于PCIe配置
- 用户行为路径分析(Google Analytics数据挖掘)
闲人编程
Python数据分析实战精要数据挖掘人工智能用户行为路径分析Analytics数据分析用户习惯
目录用户行为路径分析(GoogleAnalytics数据挖掘)1.引言2.项目背景与意义2.1用户行为路径的重要性2.2GoogleAnalytics数据概述2.3数据规模与挑战3.数据集生成与介绍4.数据预处理与GPU加速5.用户行为路径分析方法5.1用户行为路径构建5.2行为路径挖掘与模式分析5.3常用指标计算6.数据可视化与指标展示7.PyQtGUI设计与实现8.GPU加速与性能优化9.系统
- 摄像头技术OpenCV
yzx991013
计算机视觉项目机器学习人工智能python
进一步添加功能:运动检测、调整亮度对比度、截图时添加日期水印、保存视频时可选择不同编码格式完整代码:importcv2importtimeimportdatetimedefcamera_system():#打开摄像头cap=cv2.VideoCapture(0)ifnotcap.isOpened():print("无法打开摄像头")return#获取摄像头的宽度和高度frame_width=int
- 算力未来演进与多场景创新
智能计算研究中心
其他
内容概要算力作为数字经济的核心生产力,其技术架构与应用场景正经历多维突破。从技术架构层面来看,异构计算通过整合CPU、GPU、FPGA等多元芯片实现性能跃升,边缘计算则借助分布式节点降低时延并提升响应效率,而量子计算在特定领域的指数级加速潜力已进入验证阶段。在应用场景维度,工业互联网通过实时数据分析优化产线效率,智能安防依托视频流结构化处理增强预警能力,元宇宙则依赖高密度渲染与低延迟传输构建沉浸式
- 融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
在深度学习的背景下,NVIDIA的CUDA与AMD的ROCm框架缺乏有效的互操作性,导致基础设施资源利用率显著降低。随着模型规模不断扩大而预算约束日益严格,2-3年更换一次GPU的传统方式已不具可持续性。但是Pytorch的最近几次的更新可以有效利用异构计算集群,实现对所有可用GPU资源的充分调度,不受制于供应商限制。本文将深入探讨如何混合AMD/NVIDIAGPU集群以支持PyTorch分布式训
- Windows 图形显示驱动开发-WDDM 3.0功能- IOMMU DMA 重新映射(一)
程序员王马
windows图形显示驱动开发驱动开发
概述直到WDDM3.0,Dxgkrnl仅支持通过1:1物理重新映射实现IOMMU隔离,这意味着GPU访问的逻辑页被转换为相同的物理页码。IOMMUDMA重新映射允许GPU通过不再以1:1映射的逻辑地址访问内存。相反,Dxgkrnl能够提供逻辑上连续的地址范围。Dxgkrnl对GPU施加限制:GPU必须能够访问所有物理内存才能启动设备。如果GPU的最高可见地址不超过系统上安装的最高物理地址,则Dxg
- Linux中部署DeepSeek R1
Java探索者 °
linux服务器语言模型
一、首先了解DeepSeek-R1模型规格B则是指“billion”的意思,也就是十亿,表示这个模型有多少亿个参数。DeepSeek-R1本地部署硬件需求表模型规模GPU需求CPU需求内存需求存储需求备注1.5B-GTX16504GB(可选)四核i5/Ryzen3000+16GBDDR450GBSSD需4-bit量化,CPU推理延迟约10-30秒/回答,适合基础文本生成7BRTX306012GB或
- 深入GPU渲染流水管线:从顶点到像素的微观世界
晴空了无痕
图形学GPU渲染管线
现代图形硬件的架构解密与优化实践一、渲染流水线全景解析1.经典渲染管线阶段划分应用阶段几何阶段光栅化阶段像素处理阶段输出合并阶段2.现代GPU架构演进SIMT架构特性:NVIDIASM(StreamingMultiprocessor)vsAMDCU(ComputeUnit)硬件管线并行度:顶点着色器:32线程/Warp像素着色器:8x8像素/Quad延迟渲染革命:Tile-BasedDeferre
- 高亮动态物体——前景提取与动态物体检测器(opencv实现)
WenJGo
AI学习之路Python之路opencv计算机视觉人工智能深度学习神经网络
目录代码说明1.导入库2.创建背景建模对象3.打开视频源4.逐帧处理视频5.应用背景建模获得前景掩码6.形态学操作去除噪声6.1定义形态学核6.2开运算去除噪点6.3膨胀操作填补前景区域空洞7.轮廓检测识别动态物体8.绘制轮廓和边界框9.显示处理结果10.退出控制与资源释放整体代码效果展示代码说明主要功能是通过背景建模检测视频中的运动目标。其工作流程如下:读取视频帧;利用MOG2算法生成前景掩码;
- 程序员必看!DeepSeek全栈开发实战指南:从代码生成到性能优化
AI创享派
后端
一、DeepSeek技术新突破:程序员效率革命(开篇结合最新技术动态)2025年2月25日,DeepSeek接连放出两大技术王牌:全球首个面向MoE模型的全栈通信库DeepEP开源,以及深度思考R1模型的全面升级。这两项技术突破对程序员群体意义重大:通信效率飞跃:DeepEP通过NVLink优化实现GPU间158GB/s传输速度,后端开发者训练大模型时可节省60%集群资源推理性能突破:R1模型在H
- OpenCV-Python实战(1)——OpenCV简介与图像处理基础
数字化转型2025
AI人工智能方向opencvpython图像处理
OpenCV介绍Python安装OpenCV:对于Linux和Windows操作系统,首先需要在shell或cmd中运行以下命令安装NumPy:pipinstallnumpy。然后再安装OpenCV,可以选择仅安装主模块包:pipinstallopencv-python,或者安装完整包(包括主模块和附加模块):pipinstallopencv-contrib-python。OpenCV主要模块:O
- 自建 DeepSeek 时代已来,联网搜索如何高效实现
云原生
作者:张添翼(澄潭)开源LLM的新纪元:DeepSeek带来的技术平权随着DeepSeek等高质量开源大模型的涌现,企业自建智能问答系统的成本已降低90%以上。基于7B/13B参数量的模型在常规GPU服务器上即可获得商业级响应效果,配合Higress开源AI网关的增强能力,开发者可快速构建具备实时联网搜索能力的智能问答系统。Higress:零代码增强LLM的瑞士军刀Higress作为云原生API网
- OpenCV图像拼接(2)特征查找与图像匹配之基于仿射变换的图像匹配的一个类cv::detail::AffineBestOf2NearestMatcher
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::detail::AffineBestOf2NearestMatcher是OpenCV库中用于实现基于仿射变换的图像匹配的一个类。这个类主要用于在图像拼接流程中,寻找图像间的对应关系,并假设图像间存在仿射变换(即考虑缩放、旋转和平移的变换)。它通过使用“最佳
- yolov4
zzh-
笔记
V4贡献:亲民政策,单GPU就能训练的非常好,接下来很多小模块都是这个出发点两大核心方法,从数据层面和网络设计层面来进行改善消融实验,感觉能做的都让他给做了,这工作量不轻全部实验都是单GPU完成,不用太担心设备了Bagoffreebies(BOF)只增加训练成本,但是能显著提高精度,并不影响推理速度数据增强:调整亮度、对比度、色调、随机缩放、剪切、翻转、旋转网络正则化的方法:Dropout、Dro
- 【保姆级视频教程(一)】YOLOv12环境配置:从零到一,手把手保姆级教程!| 小白也能轻松玩转目标检测!
一只云卷云舒
YOLOv12保姆级通关教程YOLOYOLOv12flashattentionGPU计算能力算力
【2025全站首发】YOLOv12环境配置:从零到一,手把手保姆级教程!|小白也能轻松玩转目标检测!文章目录1.FlashAttentionWindows端WHL包下载1.1简介1.2下载链接1.3国内镜像站1.4安装方法2.NVIDIAGPU计算能力概述2.1简介2.2计算能力版本与GPU型号对照表2.2.1CUDA-EnabledDatacenterProducts2.2.2CUDA-Enab
- 使用 WebP 优化 GPU 纹理占用
泫凝
javascript前端
WebP格式相比JPEG/PNG文件更小,可以减少GPU纹理内存占用,提高WebGL/Three.js/3D渲染的性能。为什么WebP能减少GPU内存占用?文件更小→WebP比JPG/PNG压缩率更高,减少纹理上传带宽,提高渲染速度。支持透明度(RGBA)→比PNG更小,适用于UI贴图/透明纹理。减少Mipmaps体积→WebP生成的mipmap纹理占用的GPU内存更少。⚠️但WebP仍然是8-b
- LLaMA-Factory 微调训练
zsh_abc
llamadocker深度学习人工智能pythonlinux
LLaMA-Factory微调训练该框架功能,标注-微调-导出-合并-部署,一整条流程都有,而且训练时消耗的gpu算力也会小一些一,安装(推荐在linux中训练,win可以用wsl+docker)gitclonehttps://github.com/hiyouga/LLaMA-Factory.gitcdLLaMA-Factory#根据cuda版本选择安装pytoch版本pip3installtor
- 指纹浏览器:隐私保护利器与技术实践指南——从身份隐匿到多账号管理的核心解析
Hotlogin
前端
一、浏览器指纹:数字身份追踪的底层逻辑浏览器指纹通过收集设备参数(如Canvas渲染特征、字体列表、WebGL硬件信息等)生成用户唯一标识,无需Cookie即可实现精准追踪。根据EFF研究,其识别准确率可达90%以上。▶核心技术解析Canvas指纹:不同设备的抗锯齿算法差异生成唯一哈希值,成为主流追踪手段WebGL指纹:提取GPU驱动版本等硬件信息,构建设备画像环境参数交叉验证:时区、屏幕分辨率、
- GPU算力租用平台推荐
金枪鱼net
gpu算力
当考虑GPU算力租用平台时,以下是一些值得推荐的选项,它们各自具有不同的特点和优势:Dcloud:网址:cloud.guaimu.com/u/gpu特点:Dcloud是国内知名度较高的云服务器厂商之一,其GPU对于各类想要仅用于学习的学生来说,性价比应该是首选。腾讯云:网址:cloud.guaimu.com/tx/gpu(注意:此链接可能并非腾讯云官方链接,请通过腾讯云官网查找具体GPU服务器购买
- OpenCV多分辨率模板匹配与容错优化实战指南
追寻向上
opencv人工智能计算机视觉
第一章:问题背景与挑战1.1传统模板匹配的局限性模板匹配(TemplateMatching)是计算机视觉中基础且广泛使用的技术,其核心思想是通过滑动窗口在目标图像中寻找与模板最相似的位置。然而,传统方法(如OpenCV的cv2.matchTemplate)在实际应用中存在以下问题:尺寸敏感性当目标的实际尺寸与模板不一致时,匹配结果会严重偏离。例如,在工业检测中,摄像头与物体的距离变化会导致目标缩放
- OpenCV计算摄影学(23)艺术化风格化处理函数stylization()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述风格化的目的是生成不以照片写实为目标的多种多样数字图像效果。边缘感知滤波器是风格化处理的理想选择,因为它们能够弱化低对比度区域,同时保留或增强高对比度特征。该函数通过艺术化风格化处理,将输入图像转换为具有油画或卡通风格的图像,增强边缘和纹理的对比度,同时保留主要颜
- PyTorch 生态概览:为什么选择动态计算图框架?
小诸葛IT课堂
pytorch人工智能python
一、PyTorch的核心价值PyTorch作为深度学习框架的后起之秀,通过动态计算图技术革新了传统的静态图模式。其核心优势体现在:动态灵活性:代码即模型,支持即时调试Python原生支持:无缝衔接Python生态高效的GPU加速:通过CUDA实现透明的硬件加速活跃的社区生态:GitHub贡献者超1.8万人,日均更新100+次二、动态计算图VS静态计算图对比#动态计算图示例(PyTorch)impo
- python使用importlib进行动态导入py文件
*Major*
python开发语言opencv
python动态导入py文件importimportlibdefdynamic_import(module):returnimportlib.import_module(module)实例importimportlibimportcv2defdynamic_import(module):returnimportlib.import_module(module)classOpenCVAlgo:def
- Windows 图形显示驱动开发-WDDM 3.0功能- D3D12 视频编码(一)
程序员王马
windows图形显示驱动开发驱动开发windows
关于Direct3D12视频编码在Windows11(WDDM3.0)之前,DirectX12提供了应用程序和驱动程序级接口(API和DDI),以支持多个视频应用程序的GPU加速,包括视频解码、视频处理和运动估计。从Windows11开始,D3D12向现有视频API/DDI系列添加了视频编码功能。此功能提供一组一致的编码API/DDI,这些API/DDI与现有的D3D12框架一致,并允许开发人员使
- ubuntu20.04挂起/休眠后无法唤醒,只能强制重启
koigh
ubuntunvidia
文章目录1、设备信息2、问题描述3、解决思路3.1、禁用挂起功能3.2、降低驱动版本1、设备信息OS:Ubuntu20.04.2LTSx86_64Kernel:5.8.0-63-genericShell:zsh5.8DE:GNOMECPU:Inteli5-6300HQ(4)@3.200GHzGPU:IntelHDGraphics530GPU:NVIDIAGeForceGTX960MNVIDIAVe
- ubuntu20.04 GPU基准测试
爱吃土豆的猫ttt
gpu
目前仅在一种机型尝试环境系统版本(cat/etc/issue)ubuntu20.04gpu数量及型号(lspci|grepNV|grepVGA)02:00.0VGAcompatiblecontroller:NVIDIACorporationDevice2206(reva1)83:00.0VGAcompatiblecontroller:NVIDIACorporationDevice2206(reva
- Hadoop(一)
朱辉辉33
hadooplinux
今天在诺基亚第一天开始培训大数据,因为之前没接触过Linux,所以这次一起学了,任务量还是蛮大的。
首先下载安装了Xshell软件,然后公司给了账号密码连接上了河南郑州那边的服务器,接下来开始按照给的资料学习,全英文的,头也不讲解,说锻炼我们的学习能力,然后就开始跌跌撞撞的自学。这里写部分已经运行成功的代码吧.
在hdfs下,运行hadoop fs -mkdir /u
- maven An error occurred while filtering resources
blackproof
maven报错
转:http://stackoverflow.com/questions/18145774/eclipse-an-error-occurred-while-filtering-resources
maven报错:
maven An error occurred while filtering resources
Maven -> Update Proje
- jdk常用故障排查命令
daysinsun
jvm
linux下常见定位命令:
1、jps 输出Java进程
-q 只输出进程ID的名称,省略主类的名称;
-m 输出进程启动时传递给main函数的参数;
&nb
- java 位移运算与乘法运算
周凡杨
java位移运算乘法
对于 JAVA 编程中,适当的采用位移运算,会减少代码的运行时间,提高项目的运行效率。这个可以从一道面试题说起:
问题:
用最有效率的方法算出2 乘以8 等於几?”
答案:2 << 3
由此就引发了我的思考,为什么位移运算会比乘法运算更快呢?其实简单的想想,计算机的内存是用由 0 和 1 组成的二
- java中的枚举(enmu)
g21121
java
从jdk1.5开始,java增加了enum(枚举)这个类型,但是大家在平时运用中还是比较少用到枚举的,而且很多人和我一样对枚举一知半解,下面就跟大家一起学习下enmu枚举。先看一个最简单的枚举类型,一个返回类型的枚举:
public enum ResultType {
/**
* 成功
*/
SUCCESS,
/**
* 失败
*/
FAIL,
- MQ初级学习
510888780
activemq
1.下载ActiveMQ
去官方网站下载:http://activemq.apache.org/
2.运行ActiveMQ
解压缩apache-activemq-5.9.0-bin.zip到C盘,然后双击apache-activemq-5.9.0-\bin\activemq-admin.bat运行ActiveMQ程序。
启动ActiveMQ以后,登陆:http://localhos
- Spring_Transactional_Propagation
布衣凌宇
springtransactional
//事务传播属性
@Transactional(propagation=Propagation.REQUIRED)//如果有事务,那么加入事务,没有的话新创建一个
@Transactional(propagation=Propagation.NOT_SUPPORTED)//这个方法不开启事务
@Transactional(propagation=Propagation.REQUIREDS_N
- 我的spring学习笔记12-idref与ref的区别
aijuans
spring
idref用来将容器内其他bean的id传给<constructor-arg>/<property>元素,同时提供错误验证功能。例如:
<bean id ="theTargetBean" class="..." />
<bean id ="theClientBean" class=&quo
- Jqplot之折线图
antlove
jsjqueryWebtimeseriesjqplot
timeseriesChart.html
<script type="text/javascript" src="jslib/jquery.min.js"></script>
<script type="text/javascript" src="jslib/excanvas.min.js&
- JDBC中事务处理应用
百合不是茶
javaJDBC编程事务控制语句
解释事务的概念; 事务控制是sql语句中的核心之一;事务控制的作用就是保证数据的正常执行与异常之后可以恢复
事务常用命令:
Commit提交
- [转]ConcurrentHashMap Collections.synchronizedMap和Hashtable讨论
bijian1013
java多线程线程安全HashMap
在Java类库中出现的第一个关联的集合类是Hashtable,它是JDK1.0的一部分。 Hashtable提供了一种易于使用的、线程安全的、关联的map功能,这当然也是方便的。然而,线程安全性是凭代价换来的――Hashtable的所有方法都是同步的。此时,无竞争的同步会导致可观的性能代价。Hashtable的后继者HashMap是作为JDK1.2中的集合框架的一部分出现的,它通过提供一个不同步的
- ng-if与ng-show、ng-hide指令的区别和注意事项
bijian1013
JavaScriptAngularJS
angularJS中的ng-show、ng-hide、ng-if指令都可以用来控制dom元素的显示或隐藏。ng-show和ng-hide根据所给表达式的值来显示或隐藏HTML元素。当赋值给ng-show指令的值为false时元素会被隐藏,值为true时元素会显示。ng-hide功能类似,使用方式相反。元素的显示或
- 【持久化框架MyBatis3七】MyBatis3定义typeHandler
bit1129
TypeHandler
什么是typeHandler?
typeHandler用于将某个类型的数据映射到表的某一列上,以完成MyBatis列跟某个属性的映射
内置typeHandler
MyBatis内置了很多typeHandler,这写typeHandler通过org.apache.ibatis.type.TypeHandlerRegistry进行注册,比如对于日期型数据的typeHandler,
- 上传下载文件rz,sz命令
bitcarter
linux命令rz
刚开始使用rz上传和sz下载命令:
因为我们是通过secureCRT终端工具进行使用的所以会有上传下载这样的需求:
我遇到的问题:
sz下载A文件10M左右,没有问题
但是将这个文件A再传到另一天服务器上时就出现传不上去,甚至出现乱码,死掉现象,具体问题
解决方法:
上传命令改为;rz -ybe
下载命令改为:sz -be filename
如果还是有问题:
那就是文
- 通过ngx-lua来统计nginx上的虚拟主机性能数据
ronin47
ngx-lua 统计 解禁ip
介绍
以前我们为nginx做统计,都是通过对日志的分析来完成.比较麻烦,现在基于ngx_lua插件,开发了实时统计站点状态的脚本,解放生产力.项目主页: https://github.com/skyeydemon/ngx-lua-stats 功能
支持分不同虚拟主机统计, 同一个虚拟主机下可以分不同的location统计.
可以统计与query-times request-time
- java-68-把数组排成最小的数。一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的。例如输入数组{32, 321},则输出32132
bylijinnan
java
import java.util.Arrays;
import java.util.Comparator;
public class MinNumFromIntArray {
/**
* Q68输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。
* 例如输入数组{32, 321},则输出这两个能排成的最小数字32132。请给出解决问题
- Oracle基本操作
ccii
Oracle SQL总结Oracle SQL语法Oracle基本操作Oracle SQL
一、表操作
1. 常用数据类型
NUMBER(p,s):可变长度的数字。p表示整数加小数的最大位数,s为最大小数位数。支持最大精度为38位
NVARCHAR2(size):变长字符串,最大长度为4000字节(以字符数为单位)
VARCHAR2(size):变长字符串,最大长度为4000字节(以字节数为单位)
CHAR(size):定长字符串,最大长度为2000字节,最小为1字节,默认
- [强人工智能]实现强人工智能的路线图
comsci
人工智能
1:创建一个用于记录拓扑网络连接的矩阵数据表
2:自动构造或者人工复制一个包含10万个连接(1000*1000)的流程图
3:将这个流程图导入到矩阵数据表中
4:在矩阵的每个有意义的节点中嵌入一段简单的
- 给Tomcat,Apache配置gzip压缩(HTTP压缩)功能
cwqcwqmax9
apache
背景:
HTTP 压缩可以大大提高浏览网站的速度,它的原理是,在客户端请求网页后,从服务器端将网页文件压缩,再下载到客户端,由客户端的浏览器负责解压缩并浏览。相对于普通的浏览过程HTML ,CSS,Javascript , Text ,它可以节省40%左右的流量。更为重要的是,它可以对动态生成的,包括CGI、PHP , JSP , ASP , Servlet,SHTML等输出的网页也能进行压缩,
- SpringMVC and Struts2
dashuaifu
struts2springMVC
SpringMVC VS Struts2
1:
spring3开发效率高于struts
2:
spring3 mvc可以认为已经100%零配置
3:
struts2是类级别的拦截, 一个类对应一个request上下文,
springmvc是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应
所以说从架构本身上 spring3 mvc就容易实现r
- windows常用命令行命令
dcj3sjt126com
windowscmdcommand
在windows系统中,点击开始-运行,可以直接输入命令行,快速打开一些原本需要多次点击图标才能打开的界面,如常用的输入cmd打开dos命令行,输入taskmgr打开任务管理器。此处列出了网上搜集到的一些常用命令。winver 检查windows版本 wmimgmt.msc 打开windows管理体系结构(wmi) wupdmgr windows更新程序 wscrip
- 再看知名应用背后的第三方开源项目
dcj3sjt126com
ios
知名应用程序的设计和技术一直都是开发者需要学习的,同样这些应用所使用的开源框架也是不可忽视的一部分。此前《
iOS第三方开源库的吐槽和备忘》中作者ibireme列举了国内多款知名应用所使用的开源框架,并对其中一些框架进行了分析,同样国外开发者
@iOSCowboy也在博客中给我们列出了国外多款知名应用使用的开源框架。另外txx's blog中详细介绍了
Facebook Paper使用的第三
- Objective-c单例模式的正确写法
jsntghf
单例iosiPhone
一般情况下,可能我们写的单例模式是这样的:
#import <Foundation/Foundation.h>
@interface Downloader : NSObject
+ (instancetype)sharedDownloader;
@end
#import "Downloader.h"
@implementation
- jquery easyui datagrid 加载成功,选中某一行
hae
jqueryeasyuidatagrid数据加载
1.首先你需要设置datagrid的onLoadSuccess
$(
'#dg'
).datagrid({onLoadSuccess :
function
(data){
$(
'#dg'
).datagrid(
'selectRow'
,3);
}});
2.onL
- jQuery用户数字打分评价效果
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/5.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery用户数字打分评分代码 - HoverTree</
- mybatis的paramType
kerryg
DAOsql
MyBatis传多个参数:
1、采用#{0},#{1}获得参数:
Dao层函数方法:
public User selectUser(String name,String area);
对应的Mapper.xml
<select id="selectUser" result
- centos 7安装mysql5.5
MrLee23
centos
首先centos7 已经不支持mysql,因为收费了你懂得,所以内部集成了mariadb,而安装mysql的话会和mariadb的文件冲突,所以需要先卸载掉mariadb,以下为卸载mariadb,安装mysql的步骤。
#列出所有被安装的rpm package rpm -qa | grep mariadb
#卸载
rpm -e mariadb-libs-5.
- 利用thrift来实现消息群发
qifeifei
thrift
Thrift项目一般用来做内部项目接偶用的,还有能跨不同语言的功能,非常方便,一般前端系统和后台server线上都是3个节点,然后前端通过获取client来访问后台server,那么如果是多太server,就是有一个负载均衡的方法,然后最后访问其中一个节点。那么换个思路,能不能发送给所有节点的server呢,如果能就
- 实现一个sizeof获取Java对象大小
teasp
javaHotSpot内存对象大小sizeof
由于Java的设计者不想让程序员管理和了解内存的使用,我们想要知道一个对象在内存中的大小变得比较困难了。本文提供了可以获取对象的大小的方法,但是由于各个虚拟机在内存使用上可能存在不同,因此该方法不能在各虚拟机上都适用,而是仅在hotspot 32位虚拟机上,或者其它内存管理方式与hotspot 32位虚拟机相同的虚拟机上 适用。
- SVN错误及处理
xiangqian0505
SVN提交文件时服务器强行关闭
在SVN服务控制台打开资源库“SVN无法读取current” ---摘自网络 写道 SVN无法读取current修复方法 Can't read file : End of file found
文件:repository/db/txn_current、repository/db/current
其中current记录当前最新版本号,txn_current记录版本库中版本