Flink简介、部署模式及其区别

文章目录

  • 1、Flink简介
  • 2、Flink部署
    • 2.1 Standalone模式部署
    • 2.2 Standalone模式下的高可用
    • 2.3 Yarn模式
      • Yarn模式的高可用配置:
      • yarn模式中三种子模式的区别:
  • 3、并行度
  • 4、提交命令执行指定任务
  • 5、注意事项

1、Flink简介

​ Spark 和 Flink 一开始都都希望能够用同一个技术把流处理和批处理统一起来,但他们走了完全不一样的两条路。前者是以批处理的技术为根本,并尝试在批处理之上支持流计算;后者则认为流计算技术是最基本的,在流计算的基础之上支持批处理。通过Flink和Spark的对比来说:

Spark Flink
流批世界观 一切都是由批次组成。离线数据是一个大批次;而实时数据是由一个一个无限的小批次组成的。 一切都是由流组成。离线数据是有界限的流;实时数据是一个没有界限的流。
计算模型 微批处理模型(秒级) 连续流模型(毫秒级)
驱动 时间驱动型:主动拉取数据,(即使没有数据,到达一定时间,也会去计算,浪费资源) 事件驱动型:被动拉取数据,(如果没数据的时候什么也不干,节省资源)

2、Flink部署

  • 开发模式(idea)
  • 本地模式(零配置)
  • Standalone模式
  • Yarn模式
    • Session-Cluster
    • Application Mode
    • Per-Job-Cluster

2.1 Standalone模式部署

  1. 配置文件flink-conf.yaml

    jobmanager.rpc.address: hadoop102
    

2.workers

hadoop102
hadoop103
hadoop104
  1. 分发至其他节点

  2. 启动集群

    bin/start-cluster.sh
    
  3. 提交命令执行任务

    bin/flink run -m hadoop102:8081 -c com.hpu.flink.java.chapter_2.Flink03_WC_UnBoundedStream ./flink-learn-1.0-SNAPSHOT.jar
    
  4. 通过8088端口访问WebUI

2.2 Standalone模式下的高可用

​ 任何时候都有一个主 JobManager和多个备用 JobManagers,以便在主节点失败时有备用 JobManagers 来接管集群。这可以避免单点故障,一旦备 JobManager 接管集群,作业就可以正常运行。主备 JobManager 实例之间没有明显的区别。每个 JobManager都可以充当主备节点。

  1. 修改配置文件flink-conf.yaml

    high-availability: zookeeper
    high-availability.storageDir: hdfs://hadoop102:8020/flink/standalone/ha
    high-availability.zookeeper.quorum: hadoop102:2181,hadoop103:2181,hadoop104:2181
    high-availability.zookeeper.path.root: /flink-standalone
    high-availability.cluster-id: /cluster_hpu
    
  2. masters

    hadoop102:8081
    hadoop103:8081
    
  3. 分发至其他节点

  4. 修改环境变量myenv.sh,并分发source

    export HADOOP_CLASSPATH=`hadoop classpath`
    
  5. 启动flink集群

  6. 先查看通过zookeeper客户端查看哪个是master,然后kill掉master进行测试

    zkCli.sh
    get /flink-standalone/cluster_hpu/leader/rest_server_lock
    

2.3 Yarn模式

仅需配置/etc/profile.d/my.sh中配置并分发

export HADOOP_CLASSPATH=`hadoop classpath`

Yarn模式的高可用配置:

Standalone模式中, 同时启动多个Jobmanager, 一个为leader其他为standby的, 当leader挂了, 其他的才会有一个成为leader。

yarn的高可用是同时只启动一个Jobmanager, 当这个Jobmanager挂了之后, yarn会再次启动一个, 其实是利用的yarn的重试次数来实现的高可用。

  1. yarn-site.xml

    <property>
      <name>yarn.resourcemanager.am.max-attemptsname>
      <value>4value>
      <description>
        The maximum number of application master execution attempts.
      description>
    property>
    
  2. flink-conf.yaml

    yarn.application-attempts: 3
    high-availability: zookeeper
    high-availability.storageDir: hdfs://hadoop102:8020/flink/yarn/ha
    high-availability.zookeeper.quorum: hadoop102:2181,hadoop103:2181,hadoop104:2181
    high-availability.zookeeper.path.root: /flink-yarn
    
  3. 启动yarn-session

  4. 杀死Jobmanager,查看复活情况

注意: yarn-site.xml中是复活次数的上限, flink-conf.xml中的次数应该小于这个值。

测试过程中会发现一直kill不掉jobManager,是因为除了重试次数这个机制外,还有一个时间的机制(Akka超时时间),如果在一定的时间(这个时间很短)内jobManager重新拉取了几次还是挂掉的话,那就会真正的挂掉。

yarn模式中三种子模式的区别:

  • Session模式:适合需要频繁提交的多个小job,并且执行时间都不长,因为flink会在yarn中启动一个session集群,这个集群主要用来申请资源的,后续提交的其他作业,都会直接提交到这个session集群中,不需要频繁创建flink集群,这样效率会变高,但是,作业之间相互不隔离。

Flink简介、部署模式及其区别_第1张图片

  • per-job模式:适合规模大长时间运行的作业。每次提交job都会创建一个新的flink集群,任务之间互相独立,互不影响,方便管理。任务执行完成之后创建的集群也会消失。

Flink简介、部署模式及其区别_第2张图片

  • application Mode模式:每提交一个任务(application)可能会包含多个job,一个application对应一个flink集群,main方法是在集群中运行。

    application Mode模式存在bug不使用。

    bug:每个job的id都为0000000,而checkpoint依赖于id命名在hdfs集群上进行存储。这将导致错误发生。

3、并行度

  • 并行度优先级:

    算子指定>env全局指定>提交参数>配置文件

  • slot个数与并行度的关系

    默认情况下,slot个数等于流程序的并行度(程序中最大算子的并行度)
    在有多个共享组时,slot个数等于每个共享组中最大算子并行的和

4、提交命令执行指定任务

flink提交任务脚本参数:
flink 类似于spark-submit用于提交作业
run 用来执行作业(除了applicationMode模式不需要)
run-application (applicaitonMode模式执行作业的命令)
-t yarn模式中指定以yarn哪种模式运行的参数
-d 后台提交(断开与客户端的连接)
-m 指定JobManager以及UI端口
-D 指定其他参数。比如多队列提交参数(-Dyarn.application.queue=hive)
-c 指定全类名

举例:

  • 本地模式

    bin/flink run -m hadoop102:8081 -c com.hpu.flink.java.chapter_2.Flink03_WC_UnBoundedStream ./flink-prepare-1.0-SNAPSHOT.jar
    
  • standalone模式

    bin/flink run -m hadoop102:8081 -c com.hpu.flink.java.chapter_2.Flink03_WC_UnBoundedStream ./flink-prepare-1.0-SNAPSHOT.jar
    
  • yarn模式

    per-job:

    bin/flink run -d -t yarn-per-job -c com.hpu.flink.java.chapter_2.Flink03_WC_UnBoundedStream ./flink-prepare-1.0-SNAPSHOT.jar
    

    提交任务到Yarn的其他队列

    bin/flink run -d -m yarn-cluster -yqu hive -c com.hpu.flink.java.chapter_2.Flink03_WC_UnBoundedStream ./flink-prepare-1.0-SNAPSHOT.jar(老版本)
    
    bin/flink run -d -t yarn-per-job -Dyarn.application.queue=hive -c com.hpu.flink.java.chapter_2.Flink03_WC_UnBoundedStream ./flink-prepare-1.0-SNAPSHOT.jar
    

    session-cluster:

    bin/yarn-session.sh -d 
    
    bin/flink run -c com.hpu.flink.java.chapter_2.Flink03_WC_UnBoundedStream ./flink-prepare-1.0-SNAPSHOT.jar
    
    bin/flink run -t yarn-session -Dyarn.application.id=application_XXXX_YY -c com.hpu.flink.java.chapter_2.Flink03_WC_UnBoundedStream ./flink-prepare-1.0-SNAPSHOT.jar
    

    如果是1.12版本开启了Yarn模式的高可用,上面指定yarn-session集群的命令不能用,需要去掉 -t yarn-session (1.13版本已修复)

    bin/flink run -Dyarn.application.id=application_XXXX_YY -c com.hpu.flink.java.chapter_2.Flink03_WC_UnBoundedStream ./flink-prepare-1.0-SNAPSHOT.jar
    

    application mode:

    bin/flink run-application -t yarn-application -c com.atguigu.flink.java.chapter_2.Flink03_WC_UnBoundedStream ./flink-prepare-1.0-SNAPSHOT.jar
    

5、注意事项

在java语法的flink编程中调用一个方法,有以下三种实现方式

  1. 自定义一个类实现接口 √
  2. 写接口的匿名实现类 √
  3. 写Lambda表达式

注意:在写Lambda表达式的时候,可能会因为类型擦除的原因报错,解决方式如下
在方法的最后调用.returns(Types.类型)解决
比如:
SingleOutputStreamOperator> wordToOneDStream = wordDStream.map(value -> Tuple2.of(value, 1)).returns(Types.TUPLE(Types.STRING,Types.INT));

你可能感兴趣的:(Flink,flink)