import time, math, os
from tqdm import tqdm
import gc
import pickle
import random
from datetime import datetime
from operator import itemgetter
import numpy as np
import pandas as pd
import warnings
from collections import defaultdict
import collections
warnings.filterwarnings('ignore')
data_path = 'E:\\Learn\\data\\articles.csv'
save_path = 'E:\\Learn\\data\\save'
def reduce_mem(df):
starttime = time.time()
numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
start_mem = df.memory_usage().sum() / 1024**2
for col in df.columns:
col_type = df[col].dtypes
if col_type in numerics:
c_min = df[col].min()
c_max = df[col].max()
if pd.isnull(c_min) or pd.isnull(c_max):
continue
if str(col_type)[:3] == 'int':
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int8)
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
else:
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
df[col] = df[col].astype(np.float16)
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
df[col] = df[col].astype(np.float32)
else:
df[col] = df[col].astype(np.float64)
end_mem = df.memory_usage().sum() / 1024**2
print('-- Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction),time spend:{:2.2f} min'.format(end_mem,
100*(start_mem-end_mem)/start_mem,
(time.time()-starttime)/60))
return df
def get_all_click_sample(data_path, sample_nums=10000):
"""
训练集中采样一部分数据调试
data_path: 原数据的存储路径
sample_nums: 采样数目(这里由于机器的内存限制,可以采样用户做)
"""
all_click = pd.read_csv(data_path + 'train_click_log.csv')
all_user_ids = all_click.user_id.unique()
sample_user_ids = np.random.choice(all_user_ids, size=sample_nums, replace=False)
all_click = all_click[all_click['user_id'].isin(sample_user_ids)]
all_click = all_click.drop_duplicates((['user_id', 'click_article_id', 'click_timestamp']))
return all_click
def get_all_click_df(data_path='./data_raw/', offline=True):
if offline:
all_click = pd.read_csv(data_path + 'train_click_log.csv')
else:
trn_click = pd.read_csv(data_path + 'train_click_log.csv')
tst_click = pd.read_csv(data_path + 'testA_click_log.csv')
all_click = trn_click.append(tst_click)
all_click = all_click.drop_duplicates((['user_id', 'click_article_id', 'click_timestamp']))
return all_click
all_click_df = get_all_click_df(data_path, offline=False)
def get_user_item_time(click_df):
click_df = click_df.sort_values('click_timestamp')
def make_item_time_pair(df):
return list(zip(df['click_article_id'], df['click_timestamp']))
user_item_time_df = click_df.groupby('user_id')['click_article_id', 'click_timestamp'].apply(
lambda x: make_item_time_pair(x)) \
.reset_index().rename(columns={0: 'item_time_list'})
user_item_time_dict = dict(zip(user_item_time_df['user_id'], user_item_time_df['item_time_list']))
return user_item_time_dict
def get_item_topk_click(click_df, k):
topk_click = click_df['click_article_id'].value_counts().index[:k]
return topk_click
def itemcf_sim(df):
"""
文章与文章之间的相似性矩阵计算
:param df: 数据表
:item_created_time_dict: 文章创建时间的字典
return : 文章与文章的相似性矩阵
思路: 基于物品的协同过滤(详细请参考上一期推荐系统基础的组队学习), 在多路召回部分会加上关联规则的召回策略
"""
user_item_time_dict = get_user_item_time(df)
i2i_sim = {}
item_cnt = defaultdict(int)
for user, item_time_list in tqdm(user_item_time_dict.items()):
for i, i_click_time in item_time_list:
item_cnt[i] += 1
i2i_sim.setdefault(i, {})
for j, j_click_time in item_time_list:
if (i == j):
continue
i2i_sim[i].setdefault(j, 0)
i2i_sim[i][j] += 1 / math.log(len(item_time_list) + 1)
i2i_sim_ = i2i_sim.copy()
for i, related_items in i2i_sim.items():
for j, wij in related_items.items():
i2i_sim_[i][j] = wij / math.sqrt(item_cnt[i] * item_cnt[j])
pickle.dump(i2i_sim_, open(save_path + 'itemcf_i2i_sim.pkl', 'wb'))
return i2i_sim_
i2i_sim = itemcf_sim(all_click_df)
def item_based_recommend(user_id, user_item_time_dict, i2i_sim, sim_item_topk, recall_item_num, item_topk_click):
"""
基于文章协同过滤的召回
:param user_id: 用户id
:param user_item_time_dict: 字典, 根据点击时间获取用户的点击文章序列 {user1: [(item1, time1), (item2, time2)..]...}
:param i2i_sim: 字典,文章相似性矩阵
:param sim_item_topk: 整数, 选择与当前文章最相似的前k篇文章
:param recall_item_num: 整数, 最后的召回文章数量
:param item_topk_click: 列表,点击次数最多的文章列表,用户召回补全
return: 召回的文章列表 {item1:score1, item2: score2...}
注意: 基于物品的协同过滤(详细请参考上一期推荐系统基础的组队学习), 在多路召回部分会加上关联规则的召回策略
"""
user_hist_items = user_item_time_dict[user_id]
user_hist_items_ = {user_id for user_id, _ in user_hist_items}
item_rank = {}
for loc, (i, click_time) in enumerate(user_hist_items):
for j, wij in sorted(i2i_sim[i].items(), key=lambda x: x[1], reverse=True)[:sim_item_topk]:
if j in user_hist_items_:
continue
item_rank.setdefault(j, 0)
item_rank[j] += wij
if len(item_rank) < recall_item_num:
for i, item in enumerate(item_topk_click):
if item in item_rank.items():
continue
item_rank[item] = - i - 100
if len(item_rank) == recall_item_num:
break
item_rank = sorted(item_rank.items(), key=lambda x: x[1], reverse=True)[:recall_item_num]
return item_rank
user_recall_items_dict = collections.defaultdict(dict)
user_item_time_dict = get_user_item_time(all_click_df)
i2i_sim = pickle.load(open(save_path + 'itemcf_i2i_sim.pkl', 'rb'))
sim_item_topk = 10
recall_item_num = 10
item_topk_click = get_item_topk_click(all_click_df, k=50)
for user in tqdm(all_click_df['user_id'].unique()):
user_recall_items_dict[user] = item_based_recommend(user, user_item_time_dict, i2i_sim,
sim_item_topk, recall_item_num, item_topk_click)
user_item_score_list = []
for user, items in tqdm(user_recall_items_dict.items()):
for item, score in items:
user_item_score_list.append([user, item, score])
recall_df = pd.DataFrame(user_item_score_list, columns=['user_id', 'click_article_id', 'pred_score'])
def submit(recall_df, topk=5, model_name=None):
recall_df = recall_df.sort_values(by=['user_id', 'pred_score'])
recall_df['rank'] = recall_df.groupby(['user_id'])['pred_score'].rank(ascending=False, method='first')
tmp = recall_df.groupby('user_id').apply(lambda x: x['rank'].max())
assert tmp.min() >= topk
del recall_df['pred_score']
submit = recall_df[recall_df['rank'] <= topk].set_index(['user_id', 'rank']).unstack(-1).reset_index()
submit.columns = [int(col) if isinstance(col, int) else col for col in submit.columns.droplevel(0)]
submit = submit.rename(columns={'': 'user_id', 1: 'article_1', 2: 'article_2',
3: 'article_3', 4: 'article_4', 5: 'article_5'})
save_name = save_path + model_name + '_' + datetime.today().strftime('%m-%d') + '.csv'
submit.to_csv(save_name, index=False, header=True)
tst_click = pd.read_csv(data_path + 'testA_click_log.csv')
tst_users = tst_click['user_id'].unique()
tst_recall = recall_df[recall_df['user_id'].isin(tst_users)]
submit(tst_recall, topk=5, model_name='itemcf_baseline')