“深度学习”学习日记。误差反向传播法--算法实现

2023.1.18

经过学习了计算图、链式法则、加法层、乘法层、激活函数层、Affine层、Softmax层的反向传播的实现。今天来学习反向传播法的算法实现,做一次总结;

实现的思路(“学习”的步骤):

一,前提

神经网络的“学习”是,在存在合适的权重和偏置下,对其调整以拟合训练数据的过程;

步骤1:     我们从训练数据中随机选取一部分数据(mini-batch),目的是减小其损失函数的值;

步骤2:  为了完成步骤1,需要求出各个权重参数的梯度,寻找mini-batch的损失函数的值减少最多的方向;

步骤3:  进行权重参数沿梯度的微小更新;

步骤4:  重复步骤1,2,3;

我们在步骤2上会用到误差传播法,高效计算梯度,观察代码:

这里只有了两层神经网络去是实现他:来观察神经网络的结构

class TwoLayerNet:
    def __init__(self, input, hidden, output, weight__init__std=0.01):
        # 权重的初始化 假设一个权重
        self.params = {}
        self.params['w1'] = weight__init__std * np.random.randn(input, hidden)
        self.params['b1'] = np.zeros(hidden)
        self.params['w2'] = weight__init__std * np.random.randn(hidden, output)
        self.params['b2'] = np.zeros(output)

        # 生成层
        self.layers = OrderedDict()
        self.layers['Affine1'] = Affine(self.params['w1'], self.params['b1'])
        self.layers['ReLU1'] = ReLU()
        self.layers['Affine2'] = Affine(self.params['w2'], self.params['b2'])

        self.lastlayer = SoftmaxWithLoss()

    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)

        return x

    def loss(self, x, t):  # x:测试数据;t:监督数据
        y = self.predict(x)

        return self.lastlayer.forward(y, t)

    def accuracy(self, x, t):
        y = self.predict(x)
        y = np.argmax(y, axis=1)  # 正确解标签
        if t.ndim != 1:
            t = np.argmax(t, axis=1)

        accuracy = np.sum(y == t) / float(x.shape[0])
        return accuracy

    def numerical_grandient(self, x, t):  # x:测试数据;t:监督数据
        loss_w = lambda w: self.loss(x, t)

        grads = {}
        grads['w1'] = numerical_gradient(loss_w, self.params['w1'])
        grads['b1'] = numerical_gradient(loss_w, self.params['b1'])
        grads['w2'] = numerical_gradient(loss_w, self.params['w2'])
        grads['b2'] = numerical_gradient(loss_w, self.params['b2'])

        return grads

    def gradient(self, x, t):
        # forward
        self.loss(x, t)

        # backward
        dout = 1
        dout = self.lastlayer.backward(dout)

        layers = list(self.layers.values())
        layers.reverse()
        # reserved() 是 Python 内置函数之一,其功能是对于给定的序列(包括列表、元组、字符串以及 range(n) 区间),该函数可以返回一个逆序序列的迭代器(用于遍历该逆序序列)
        for layer in layers:
            dout = layer.backward(dout)

        # setting
        grads = {}
        grads['w1'] = self.layers['Affine1'].dw
        grads['b1'] = self.layers['Affine1'].db
        grads['w2'] = self.layers['Affine2'].dw
        grads['b2'] = self.layers['Affine2'].db

        return grads

OrderDict是有序字典:

记住向字典里添加元素的顺序,逆序输出;

Reserved函数:

# reserved() 是 Python 内置函数之一,其功能是对于给定的序列(包括列表、元组、字符串以及 range(n) 区间),该函数可以返回一个逆序序列的迭代器(用于遍历该逆序序列);

梯度确认利用数值微分和误差反向传播法的差分:

数值微分的特点是简单、速度慢、不易出错;误差反向传播法的特点是复杂、速度快,容易出错。所以我们来进行梯度确认,观察输出结果是否一致;
# 读入数据和梯度确认
x_batch = x_train[:3]  # 3 张图片 (3个数字) 因为数值微分运行很慢,取3个结果观察
t_batch = t_train[:3]

grad_numberical = networks.numerical_grandient(x_batch, t_batch)  # 数值微分法
grad_backprop = networks.gradient(x_batch, t_batch)  # 误差反向传播法

# 求各个权重的绝对平均值
print("gradient recognition:", '\n')
for key in grad_numberical.keys():
    diff = np.average(np.abs(grad_backprop[key] - grad_numberical[key]))
    print(key + ":" + str(diff), file=outputfile)

# 输出结果:
# w1:0.0008062789370314258
# b1:0.007470903158435932
# w2:0.007911547556927193
# b2:0.4162550575209752

记录保存功能:

运行的结果非常多,为了更好的改进神经网络模型,对运行记录保存很有必要;
# 输出结果保存
def Result_save(name):
    path = "C:\\Users\\zzh\\Deshtop\\"  # 自己根据需要设置保存路径
    full_path = path + name + '.txt'  # 也可以创建一个.doc的word文档
    file = open(full_path, 'w')

    return file

..............................................

...........代码运行部分.............

..............................................

outputfile.close()

这里我们将运行结果保存到了txt的文件中:

“深度学习”学习日记。误差反向传播法--算法实现_第1张图片 

 

我们要将需要保存是运行结果print()中加入file=ouputfile,最后面一定的有outputfile.close(),否则都不会成功

好像这样:

print("the Accuracy:" + str(float(accuracy_cnt) / x_test.shape[0]), file=outputfile)
相比于之前的代码,这次的学习通过使用层的模块化,神经网络中可以自由地组装层,轻松构建自己喜欢的神经网络。

以下是完整代码: 

import numpy as np
from collections import OrderedDict  # 有序字典:记住向字典里添加元素的顺序
import sys, os
from dataset.mnist import load_mnist

sys.path.append(os.pardir)


# 数值微分
def numerical_gradient(f, x):
    h = 1e-4  # 0.0001
    grad = np.zeros_like(x)

    it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])  # np.nditer() 迭代器处理多维数组
    while not it.finished:
        idx = it.multi_index
        tmp_val = x[idx]
        x[idx] = float(tmp_val) + h
        fxh1 = f(x)  # f(x+h)

        x[idx] = tmp_val - h
        fxh2 = f(x)  # f(x-h)
        grad[idx] = (fxh1 - fxh2) / (2 * h)

        x[idx] = tmp_val  # 还原值
        it.iternext()

    return grad


# 损失函数
def cross_entropy_error(y, t):
    delta = 1e-7
    return -1 * np.sum(t * np.log(y + delta))


# 激活函数
def softmax(x):
    if x.ndim == 2:
        x = x.T
        x = x - np.max(x, axis=0)
        y = np.exp(x) / np.sum(np.exp(x), axis=0)
        return y.T

    x = x - np.max(x)
    return np.exp(x) / np.sum(np.exp(x))


def sigmoid(x1):
    return 1 / (1 + np.exp(-x1))


# 加法层、乘法层、激活函数层、Affine层、Softmax层
class Addyer:  # 加法节点
    def __init__(self):
        pass

    def forward(self, x, y):
        out = x + y
        return out

    def backward(self, dout):
        dx = dout * 1
        dy = dout * 1
        return dx, dy


class Mullyer:  # 乘法节点
    def __init__(self):  # __init__() 中会初始化实例变量
        self.x = None
        self.y = None

    def forward(self, x, y):
        self.x = y
        self.y = x
        out = x * y

        return out

    def backward(self, dout):
        dx = dout * self.x
        dy = dout * self.y

        return dx, dy


class ReLU:
    def __init__(self):
        self.mask = None

    def forward(self, x):
        self.mask = (x <= 0)
        out = x.copy()
        out[self.mask] = 0

        return out

    def backward(self, dout):
        dout[self.mask] = 0
        dx = dout

        return dx


class SoftmaxWithLoss:
    def __init__(self):
        self.loss = None
        self.y = None
        self.t = None

    def forward(self, x, t):
        self.t = t
        self.y = softmax(x)
        self.loss = cross_entropy_error(self.y, self.t)

        return self.loss

    def backward(self, dout=1):
        batch_size = self.t.shape[0]
        dx = (self.y - self.t) / batch_size

        return dx


class Affine:
    def __init__(self, w, b):
        self.w = w
        self.b = b
        self.x = None
        self.dw = None
        self.db = None

    def forward(self, x):
        self.x = x
        out = np.dot(x, self.w) + self.b

        return out

    def backward(self, dout):
        dx = np.dot(dout, self.w.T)
        self.dw = np.dot(self.x.T, dout)
        self.db = np.sum(dout, axis=0)

        return dx


class TwoLayerNet:
    def __init__(self, input, hidden, output, weight__init__std=0.01):
        # 权重的初始化 假设一个权重
        self.params = {}
        self.params['w1'] = weight__init__std * np.random.randn(input, hidden)
        self.params['b1'] = np.zeros(hidden)
        self.params['w2'] = weight__init__std * np.random.randn(hidden, output)
        self.params['b2'] = np.zeros(output)

        # 生成层
        self.layers = OrderedDict()
        self.layers['Affine1'] = Affine(self.params['w1'], self.params['b1'])
        self.layers['ReLU1'] = ReLU()
        self.layers['Affine2'] = Affine(self.params['w2'], self.params['b2'])

        self.lastlayer = SoftmaxWithLoss()

    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)

        return x

    def loss(self, x, t):  # x:测试数据;t:监督数据
        y = self.predict(x)

        return self.lastlayer.forward(y, t)

    def accuracy(self, x, t):
        y = self.predict(x)
        y = np.argmax(y, axis=1)  # 正确解标签
        if t.ndim != 1:
            t = np.argmax(t, axis=1)

        accuracy = np.sum(y == t) / float(x.shape[0])
        return accuracy

    def numerical_grandient(self, x, t):  # x:测试数据;t:监督数据
        loss_w = lambda w: self.loss(x, t)

        grads = {}
        grads['w1'] = numerical_gradient(loss_w, self.params['w1'])
        grads['b1'] = numerical_gradient(loss_w, self.params['b1'])
        grads['w2'] = numerical_gradient(loss_w, self.params['w2'])
        grads['b2'] = numerical_gradient(loss_w, self.params['b2'])

        return grads

    def gradient(self, x, t):
        # forward
        self.loss(x, t)

        # backward
        dout = 1
        dout = self.lastlayer.backward(dout)

        layers = list(self.layers.values())
        layers.reverse()
        # reserved() 是 Python 内置函数之一,其功能是对于给定的序列(包括列表、元组、字符串以及 range(n) 区间),该函数可以返回一个逆序序列的迭代器(用于遍历该逆序序列)
        for layer in layers:
            dout = layer.backward(dout)

        # setting
        grads = {}
        grads['w1'] = self.layers['Affine1'].dw
        grads['b1'] = self.layers['Affine1'].db
        grads['w2'] = self.layers['Affine2'].dw
        grads['b2'] = self.layers['Affine2'].db

        return grads


# 输出结果保存
def Result_save(name):
    path = "C:\\Users\\zzh\\Deshtop\\"
    full_path = path + name + '.txt'  # 也可以创建一个.doc的word文档
    file = open(full_path, 'w')

    return file


filename = 'MNIST_RESULT'
Result_save(filename)
output = sys.stdout
outputfile = open("C:\\Users\\zzh\\Deshtop\\" + filename + '.txt', 'w')
sys.stdout = outputfile

# 数据导入
(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, one_hot_label=True)

networks = TwoLayerNet(input=784, hidden=50, output=10)

# # 读入数据和梯度确认
# x_batch = x_train[:3]  # 3 张图片 (3个数字) 因为数值微分运行很慢,取3个结果观察
# t_batch = t_train[:3]
#
# grad_numberical = networks.numerical_grandient(x_batch, t_batch)  # 数值微分法
# grad_backprop = networks.gradient(x_batch, t_batch)  # 误差反向传播法
#
# # 求各个权重的绝对平均值
# for key in grad_numberical.keys():
#     diff = np.average(np.abs(grad_backprop[key] - grad_numberical[key]))
#     print(key + ":" + str(diff))
#
# # w1:0.0008062789370314258
# # b1:0.007470903158435932
# # w2:0.007911547556927193
# # b2:0.4162550575209752

# 超参数
iters_num = 10000
train_size = x_train.shape[0]  # 60000
batch_size = 100  # 批处理数量
learning_rate = 0.1

train_acc_list = []
test_acc_list = []
train_loss_list = []
iter_per_epoch = max(train_size / batch_size, 1)

print("MNIST classification", '\n', "Nerual Network is learning weight and bias", file=outputfile)
for i in range(iters_num):
    batch_mask = np.random.choice(train_size, batch_size)  # mini——batch 处理
    x_batch = x_train[batch_mask]
    t_batch = t_train[batch_mask]

    grad = networks.gradient(x_batch, t_batch)  # 通过误差反向传播法求梯度
    # 更新权重、偏置参数
    for key in ('w1', 'b1', 'w2', 'b2'):
        networks.params[key] -= learning_rate * grad[key]

    loss = networks.loss(x_batch, t_batch)
    train_loss_list.append(loss)
    # 每个epoch的识别精度 输出的是总的正确率 而不是一个数据(图片)的概率
    if i % iter_per_epoch == 0:
        train_acc = networks.accuracy(x_train, t_train)
        test_acc = networks.accuracy(x_test, t_test)
        train_acc_list.append(train_acc)
        test_acc_list.append(test_acc)
        print("train acc, test acc |" + str(train_acc) + ",", str(test_acc), file=outputfile)

# 输出的概率 利用更新好的参数去推理
print("the shape of weight and bias:", '\n', file=outputfile)
print(networks.params['w1'].shape, file=outputfile)  # (784, 50)
print(networks.params['b1'].shape, file=outputfile)  # (50,)
print(networks.params['w2'].shape, file=outputfile)  # (50, 10)
print(networks.params['b2'].shape, file=outputfile)  # (10,)

accuracy_cnt = 0

for i in range(x_test.shape[0]):
    y = networks.predict(x_test[i])
    print("the ", i + 1, " times:", '\n', file=outputfile)
    print("the probability of picture:", '\n', y, file=outputfile)
    print("the right label:", '\n', t_test[i], file=outputfile)
    result = np.argmax(y)
    answer = np.argmax(t_test[i])
    if result == answer:
        print("classified successfully, this picture is", result, '\n', file=outputfile)
        accuracy_cnt += 1
    else:
        print("classified unsuccessfully", file=outputfile)

    print('\n', file=outputfile)

print("the Accuracy:" + str(float(accuracy_cnt) / x_test.shape[0]), file=outputfile)
outputfile.close()

 MINIST数据导入的代码:

# coding: utf-8
try:
    import urllib.request
except ImportError:
    raise ImportError('You should use Python 3.x')
import os.path
import gzip
import pickle
import os
import numpy as np

url_base = 'http://yann.lecun.com/exdb/mnist/'
key_file = {
    'train_img': 'train-images-idx3-ubyte.gz',
    'train_label': 'train-labels-idx1-ubyte.gz',
    'test_img': 't10k-images-idx3-ubyte.gz',
    'test_label': 't10k-labels-idx1-ubyte.gz'
}

dataset_dir = os.path.dirname(os.path.abspath(__file__))
save_file = dataset_dir + "/mnist.pkl"

train_num = 60000
test_num = 10000
img_dim = (1, 28, 28)
img_size = 784


def _download(file_name):
    file_path = dataset_dir + "/" + file_name

    if os.path.exists(file_path):
        return

    print("Downloading " + file_name + " ... ")
    urllib.request.urlretrieve(url_base + file_name, file_path)
    print("Done")


def download_mnist():
    for v in key_file.values():
        _download(v)


def _load_label(file_name):
    file_path = dataset_dir + "/" + file_name

    print("Converting " + file_name + " to NumPy Array ...")
    with gzip.open(file_path, 'rb') as f:
        labels = np.frombuffer(f.read(), np.uint8, offset=8)
    print("Done")

    return labels


def _load_img(file_name):
    file_path = dataset_dir + "/" + file_name

    print("Converting " + file_name + " to NumPy Array ...")
    with gzip.open(file_path, 'rb') as f:
        data = np.frombuffer(f.read(), np.uint8, offset=16)
    data = data.reshape(-1, img_size)
    print("Done")

    return data


def _convert_numpy():
    dataset = {}
    dataset['train_img'] = _load_img(key_file['train_img'])
    dataset['train_label'] = _load_label(key_file['train_label'])
    dataset['test_img'] = _load_img(key_file['test_img'])
    dataset['test_label'] = _load_label(key_file['test_label'])

    return dataset


def init_mnist():
    download_mnist()
    dataset = _convert_numpy()
    print("Creating pickle file ...")
    with open(save_file, 'wb') as f:
        pickle.dump(dataset, f, -1)
    print("Done!")


def _change_one_hot_label(X):
    T = np.zeros((X.size, 10))
    for idx, row in enumerate(T):
        row[X[idx]] = 1

    return T


def load_mnist(normalize=True, flatten=True, one_hot_label=False):
    """读入MNIST数据集
    
    Parameters
    ----------
    normalize : 将图像的像素值正规化为0.0~1.0
    one_hot_label : 
        one_hot_label为True的情况下,标签作为one-hot数组返回
        one-hot数组是指[0,0,1,0,0,0,0,0,0,0]这样的数组
    flatten : 是否将图像展开为一维数组
    
    Returns
    -------
    (训练图像, 训练标签), (测试图像, 测试标签)
    """
    if not os.path.exists(save_file):
        init_mnist()

    with open(save_file, 'rb') as f:
        dataset = pickle.load(f)

    if normalize:
        for key in ('train_img', 'test_img'):
            dataset[key] = dataset[key].astype(np.float32)
            dataset[key] /= 255.0

    if one_hot_label:
        dataset['train_label'] = _change_one_hot_label(dataset['train_label'])
        dataset['test_label'] = _change_one_hot_label(dataset['test_label'])

    if not flatten:
        for key in ('train_img', 'test_img'):
            dataset[key] = dataset[key].reshape(-1, 1, 28, 28)

    return (dataset['train_img'], dataset['train_label']), (dataset['test_img'], dataset['test_label'])


if __name__ == '__main__':
    init_mnist()

你可能感兴趣的:(深度学习,人工智能,python,MNIST)