Python数据分析 --前言

前言

一. 重要的Python库

考虑到那些还不太了解Python科学计算生态系统和库的读者,下面我先对各个库做
一个简单的介绍。

NumPy

   NumPy(Numerical Python的简称)是Python科学计算的基础包。本书大
部分内容都基于NumPy以及构建于其上的库。它提供了以下功能(不限于此):

  • 快速高效的多维数组对象ndarray。
  • 用于对数组执行元素级计算以及直接对数组执行数学运算的函数。
  • 用于读写硬盘上基于数组的数据集的工具。
  • 线性代数运算、傅里叶变换,以及随机数生成。
     -成熟的C API, 用于Python插件和原生C、C++、Fortran代码访问NumPy的数据结构和计算工具。
    除了为Python提供快速的数组处理能力,NumPy在数据分析方面还有另外一个主要作用,即作为在算法和库之间传递数据的容器。对于数值型数据,NumPy数组在存储和处理数据时要比内置的Python数据结构高效得多。此外,由低级语言(比如C和Fortran)编写的库可以直接操作NumPy数组中的数据,无需进行任何数据复制工作。因此,许多Python的数值计算工具要么使用NumPy数组作为主要的数据结构,要么可以与NumPy进行无缝交互操作。

pandas

pandas提供了快速便捷处理结构化数据的大量数据结构和函数。自从2010年出现以来,它助使Python成为强大而高效的数据分析环境。本书用得最多的pandas对象是DataFrame,它是一个面向列(column-oriented)的二维表结构,另一个是Series,一个一维的标签化数组对象。pandas兼具NumPy高性能的数组计算功能以及电子表格和关系型数据库(如SQL)灵活的数据处理功能。它提供了复杂精细的索引功能,能更加便捷地完成重塑、切片和切块、聚合以及选取数据子集等操作。因为数据操作、准备、清洗是数据分析最重要的技能,pandas是本书的重点。
作为背景,我是在2008年初开始开发pandas的,那时我任职于AQR Capital Management,一家量化投资管理公司,我有许多工作需求都不能用任何单一的工具解决:

  • 有标签轴的数据结构,支持自动或清晰的数据对齐。这可以防止由于数据不对齐,或处理来源不同的索引不同的数据,所造成的错误。
  • 集成时间序列功能。
  • 相同的数据结构用于处理时间序列数据和非时间序列数据。
  • 保存元数据的算术运算和压缩。
  • 灵活处理缺失数据。
  • 合并和其它流行数据库(例如基于SQL的数据库)的关系操作。我想只用一种工具就实现所有功能,并使用通用软件开发语言。Python是一个不错的候选语言,但是此时没有集成的数据结构和工具来实现。我一开始就是想把pandas设计为一款适用于金融和商业分析的工具,pandas专注于深度时间序列功能和工具,适用于时间索引化的数据。
    对于使用R语言进行统计计算的用户,肯定不会对DataFrame这个名字感到陌生,因为它源自于R的data.frame对象。但与Python不同,data frames是构建于R和它的标准库。因此,pandas的许多功能不属于R或它的扩展包。pandas这个名字源于panel data(面板数据,这是多维结构化数据集在计量经济学中的术语)以及Python data analysis(Python数据分析)。

matplotlib

matplotlib是最流行的用于绘制图表和其它二维数据可视化的Python库。它最初由John D.Hunter(JDH)创建,目前由一个庞大的开发团队维护。它非常适合创建出版物上用的图表。虽然还有其它的Python可视化库,matplotlib却是使用最广泛的,并且它和其它生态工具配合也非常完美。我认为,可以使用它作为默认的可视化工具。

IPython和Jupyter

IPython项目起初是Fernando Pérez在2001年的一个用以加强和Python交互的子项目。在随后的16年中,它成为了Python数据栈最重要的工具之一。虽然IPython本身没有提供计算和数据分析的工具,它却可以大大提高交互式计算和软件开发的生产率。IPython鼓励“执行-探索”的工作流,区别于其它编程软件的“编辑-编译-运行”的工作流。它还可以方便地访问系统的shell和文件系统。因为大部分的数据分析代码包括探索、试错和重复,IPython可以使工作更快。
2014年,Fernando和IPython团队宣布了Jupyter项目,一个更宽泛的多语言交互计算工具的计划。IPython web notebook变成了Jupyter notebook,现在支持40种编程语言。IPython现在可以作为Jupyter使用Python的内核(一种编程语言模式)。
IPython变成了Jupyter庞大开源项目(一个交互和探索式计算的高效环境)中的一个组件。它最老也是最简单的模式,现在是一个用于编写、测试、调试Python代码的强化shell。你还可以使用通过Jupyter Notebook,一个支持多种语言的交互式网络代码“笔记本”,来使用IPython。IPython shell 和Jupyter notebooks特别适合进行数据探索和可视化。
Jupyter notebooks还可以编写Markdown和HTML内容,它提供了一种创建代码和文本的富文本方法。其它编程语言也在Jupyter中植入了内核,好让在Jupyter中可以使用Python以外的语言。对我个人而言,我的大部分Python工作都要用到IPython,包括运行、调试和测试代码。
在本书的GitHub页面,你可以找到包含各章节所有代码实例的Jupyter notebooks。

SciPy

SciPy是一组专门解决科学计算中各种标准问题域的包的集合,主要包括下面这些包:

  • scipy.integrate:数值积分例程和微分方程求解器。
  • scipy.linalg:扩展了由numpy.linalg提供的线性代数例程和矩阵分解功能。
  • scipy.optimize:函数优化器(最小化器)以及根查找算法。
  • scipy.signal:信号处理工具。
  • scipy.sparse:稀疏矩阵和稀疏线性系统求解器。
  • scipy.special:SPECFUN(这是一个实现了许多常用数学函数(如伽玛函数)的Fortran库)的包装器。
  • scipy.stats:标准连续和离散概率分布(如密度函数、采样器、连续分布函数等)、各种统计检验方法,以及更好的描述统计法。
    NumPy和SciPy结合使用,便形成了一个相当完备和成熟的计算平台,可以处理多种传统的科学计算问题。

scikit-learn

2010年诞生以来,scikit-learn成为了Python的通用机器学习工具包。仅仅七年,就
汇聚了全世界超过1500名贡献者。它的子模块包括:

  • 分类:SVM、近邻、随机森林、逻辑回归等等。
  • 回归:Lasso、岭回归等等。
  • 聚类:k-均值、谱聚类等等。
  • 降维:PCA、特征选择、矩阵分解等等。
  • 选型:网格搜索、交叉验证、度量。
  • 预处理:特征提取、标准化。
    与pandas、statsmodels和IPython一起,scikit-learn对于Python成为高效数据科学编程语言起到了关键作用。虽然本书不会详细讲解scikit-learn,我会简要介绍它的一些模型,以及用其它工具如何使用这些模型。

statsmodels

statsmodels是一个统计分析包,起源于斯坦福大学统计学教授Jonathan Taylor,他设计了多种流行于R语言的回归分析模型。Skipper Seabold和Josef Perktold在2010年正式创建了statsmodels项目,随后汇聚了大量的使用者和贡献者。受到R的公式系统的启发,Nathaniel Smith发展出了Patsy项目,它提供了statsmodels的公式或模型的规范框架。
与scikit-learn比较,statsmodels包含经典统计学和经济计量学的算法。包括如下子模块:

  • 回归模型:线性回归,广义线性模型,健壮线性模型,线性混合效应模型等等。
  • 方差分析(ANOVA)。
  • 时间序列分析:AR,ARMA,ARIMA,VAR和其它模型。
  • 非参数方法: 核密度估计,核回归。
  • 统计模型结果可视化。
    statsmodels更关注与统计推断,提供不确定估计和参数p-值。相反的,scikit-learn注重预测。
    同scikit-learn一样,我也只是简要介绍statsmodels,以及如何用NumPy和pandas使用它。

你可能感兴趣的:(机器学习,python,数据分析,机器学习)