C语言openCV图像显示歪斜,C++ opencv-3.4.1 复杂的图像矫正方法

参考贾志刚的opencv图像处理方法,对一张倾斜图片进行矫正。条条大路通罗马,对一张倾斜图片进,有很多方法,这是最复杂的一种,通过求四个倾斜角点的位置,再设置目标点的位置,通过仿射变换进行图片矫正。

与PS方法的优势就是可以通过代码批量处理图片。

图片:

只能说这种方法确实比较好,特别是在进行图片批处理的时候,虽然复杂了点,但是能保证对大部分图片效果较好。

主要流程:

1 . 二值化

形态学操作,去噪点

进行轮廓查找, 通过 矩形的长款过滤较小和图片的大边框

霍夫直线变换,查找直线

过滤直线,通过直线位置和长度确定上下左右四条直线

求出四条直线

得到四条直线的交点,这就是物体原始四个角点

把原始的四个角点,变换到图片的四个角落,透视变换会把相对位置的像素通过线性插值填充

#include

#include

#include

using namespace cv;

using namespace std;

Mat src, dst, gray_src;

char input_image[] = "input image";

char output_image[] = "output image";

int main(int argc, char ** argv){

src = imread("case5.jpg");

if (src.empty()){

printf("colud not load image ..\n");

return -1;

}

namedWindow(input_image, CV_WINDOW_AUTOSIZE);

namedWindow(output_image, CV_WINDOW_AUTOSIZE);

imshow(input_image, src);

// 二值化处理

Mat binary;

cvtColor(src, gray_src, COLOR_BGR2GRAY);

threshold(gray_src, binary, 0, 255, CV_THRESH_BINARY_INV | THRESH_OTSU);

imshow("binary image", binary);

// 腐蚀操作

Mat structureElement = getStructuringElement(MORPH_RECT, Size(5, 5), Point(-1, -1));

dilate(binary, binary, structureElement); //腐蚀

imshow("erode", binary);

// 形态学操作

Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));

morphologyEx(binary, dst, MORPH_OPEN, kernel, Point(-1, -1), 3);

imshow("morphology", dst);

// 轮廓发现

bitwise_not(dst, dst, Mat());

vector> contours;

vector hireachy;

int width = src.cols;

int height = src.rows;

Mat drawImage = Mat::zeros(src.size(), CV_8UC3);

findContours(dst, contours, hireachy, CV_RETR_TREE, CHAIN_APPROX_SIMPLE, Point());

for (size_t t = 0; t < contours.size(); t++){

Rect rect = boundingRect(contours[t]);

printf("rect.width : %d, src.cols %d \n ", rect.width, src.cols);

if (rect.width > (src.cols / 2) && rect.width < (src.cols - 5))

{

drawContours(drawImage, contours, static_cast(t), Scalar(0, 0, 255), 2, 8, hireachy, 0, Point());

}

}

imshow("contours", drawImage);

// 绘制直线

vector lines;

Mat contoursImg;

int accu = min(width * 0.5, height *0.5);

cvtColor(drawImage, contoursImg, COLOR_BGR2GRAY);

Mat linesImage = Mat::zeros(src.size(), CV_8UC3);

HoughLinesP(contoursImg, lines, 1, CV_PI / 180.0, accu, accu, 0);

for (size_t t = 0; t < lines.size(); t++){

Vec4i ln = lines[t];

line(linesImage, Point(ln[0], ln[1]), Point(ln[2], ln[3]), Scalar(0, 0, 255), 2, 8, 0);

}

printf("number of lines : %d", lines.size());

imshow("lines image :", linesImage);

// 定位直线

int deltah = 0;

Vec4i topLine, bottomLine, leftLine, rightLine;

for (int i = 0; i < lines.size(); i++){

Vec4i ln = lines[i];

deltah = abs(ln[3] - ln[1]);

if (ln[3] < height / 2.0 && ln[1] < height / 2.0 && deltah < accu - 1){

topLine = lines[i];

}

if (ln[3] > height / 2.0 && ln[1] > height / 2.0 && deltah < accu - 1){

bottomLine = lines[i];

}

if (ln[0] < width / 2.0 && ln[2] < width / 2.0 ){

leftLine = lines[i];

}

if (ln[0] > width / 2.0 && ln[2] > width / 2.0){

rightLine = lines[i];

}

}

cout << "topLine : " << topLine << endl;

cout << "bottomLine : " << bottomLine << endl;

cout << "leftLine : " << leftLine << endl;

cout << "rightLine : " << rightLine << endl;

// 拟合四条直线方程

float k1, c1;

k1 = float(topLine[3] - topLine[1]) / float(topLine[2] - topLine[0]);

c1 = topLine[1] - k1*topLine[0];

float k2, c2;

k2 = float(bottomLine[3] - bottomLine[1]) / float(bottomLine[2] - bottomLine[0]);

c2 = bottomLine[1] - k2*bottomLine[0];

float k3, c3;

k3 = float(leftLine[3] - leftLine[1]) / float(leftLine[2] - leftLine[0]);

c3 = leftLine[1] - k3*leftLine[0];

float k4, c4;

k4 = float(rightLine[3] - rightLine[1]) / float(rightLine[2] - rightLine[0]);

c4 = rightLine[1] - k4*rightLine[0];

// 四条直线交点

Point p1; // 左上角

p1.x = static_cast((c1 - c3) / (k3 - k1));

p1.y = static_cast(k1*p1.x + c1);

Point p2; // 右上角

p2.x = static_cast((c1 - c4) / (k4 - k1));

p2.y = static_cast(k1*p2.x + c1);

Point p3; // 左下角

p3.x = static_cast((c2 - c3) / (k3 - k2));

p3.y = static_cast(k2*p3.x + c2);

Point p4; // 右下角

p4.x = static_cast((c2 - c4) / (k4 - k2));

p4.y = static_cast(k2*p4.x + c2);

cout << "p1(x, y)=" << p1.x << "," << p1.y << endl;

cout << "p2(x, y)=" << p2.x << "," << p2.y << endl;

cout << "p3(x, y)=" << p3.x << "," << p3.y << endl;

cout << "p4(x, y)=" << p4.x << "," << p4.y << endl;

// 显示四个点坐标

circle(linesImage, p1, 2, Scalar(255, 0, 0), 2, 8, 0);

circle(linesImage, p2, 2, Scalar(255, 0, 0), 2, 8, 0);

circle(linesImage, p3, 2, Scalar(255, 0, 0), 2, 8, 0);

circle(linesImage, p4, 2, Scalar(255, 0, 0), 2, 8, 0);

line(linesImage, Point(topLine[0], topLine[1]), Point(topLine[2], topLine[3]), Scalar(0, 255, 0), 2, 8, 0);

imshow("four corners", linesImage);

// 透视变换

vector src_corners(4); // 原来的点

src_corners[0] = p1;

src_corners[1] = p2;

src_corners[2] = p3;

src_corners[3] = p4;

vector dst_corners(4); // 目标点位

dst_corners[0] = Point(0,0);

dst_corners[1] = Point(width, 0);

dst_corners[2] = Point(0, height);

dst_corners[3] = Point(width , height);

// 获取变换矩阵

Mat reslutImg;

Mat warpmatrix = getPerspectiveTransform(src_corners, dst_corners);

warpPerspective(src, reslutImg, warpmatrix, reslutImg.size(), INTER_LINEAR);

imshow(output_image, reslutImg);

waitKey(0);

return 0;

}

二值化

形态学操作

轮廓查找

霍夫变换

求直线交点

透视变换

另种比较简单的方法

如图:

操作和以前的方法类似,处理比较简单。

二值化

使用canny进行轮廓检测,把轮廓进行显著化

查找轮廓,得到旋转的角度

进行仿射变换

#include

#include

#include

using namespace cv;

using namespace std;

Mat src, dst, gray_src;

char input_image[] = "input image";

char output_image[] = "output image";

int threshold_value = 100;

int threshold_max = 255;

void FindROI(int, void*);

void Check_Skew(int, void *);

int main(int argc, char ** argv){

src = imread("case12.jpg");

if (src.empty()){

printf("colud not load image ..\n");

return -1;

}

namedWindow(input_image, CV_WINDOW_AUTOSIZE);

namedWindow(output_image, CV_WINDOW_AUTOSIZE);

imshow(input_image, src);

createTrackbar("Threshold", output_image, &threshold_value, threshold_max, Check_Skew);

Check_Skew(0, 0);

waitKey(0);

return 0;

}

void Check_Skew(int, void *){

Mat canny_output;

cvtColor(src, gray_src, COLOR_BGR2GRAY);

Canny(gray_src, canny_output, threshold_value, threshold_value * 2, 3, false);

vector> contours;

vector hireachy;

findContours(canny_output, contours, hireachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));

Mat drawImg = Mat::zeros(src.size(), CV_8UC3);

float maxw = 0;

float maxh = 0;

double degree = 0;

for (size_t t = 0; t < contours.size(); t++){

RotatedRect minRect = minAreaRect(contours[t]);

degree = abs(minRect.angle);

if (degree > 0){

maxw = max(maxw, minRect.size.width);

maxh = max(maxh, minRect.size.height);

}

}

RNG rng(12345);

for (size_t t = 0; t < contours.size(); t++){

RotatedRect minRect = minAreaRect(contours[t]);

if (maxw == minRect.size.width && maxh == minRect.size.height){

degree = minRect.angle;

Point2f pts[4];

minRect.points(pts);

Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));

for (int i = 0; i < 4; i++){

line(drawImg, pts[i], pts[(i + 1) % 4], color, 2, 8, 0);

}

}

}

imshow("roi", drawImg);

printf("max contours width: %f\n", maxw);

printf("max contours heigh: %f\n", maxh);

printf("max contours angle: %f\n", degree);

Point2f center(src.cols / 2, src.rows / 2);

Mat rotm = getRotationMatrix2D(center, degree, 1.0);

warpAffine(src, dst, rotm, src.size(), INTER_LINEAR, 0, Scalar(255, 255, 255));

imshow(output_image, dst);

}

轮廓查找

矫正

你可能感兴趣的:(C语言openCV图像显示歪斜)