参考项目:FastSpeech2的github实现
FastSpeech2论文
FastSpeech2模型代码分析
FastSpeech2是一个基于Transformer的端到端语音合成模型,其结构如下:
Encoder将音素序列转换到隐藏序列,然后Variance Adaptor将不同的变量信息,如时长、音高、能量加入到到隐藏序列中,最终解码器将隐藏序列转换为梅尔谱序列。
FastSpeech2的实现位于/model/fastspeech2.py中:
class FastSpeech2(nn.Module):
""" FastSpeech2 """
def __init__(self, preprocess_config, model_config):
super(FastSpeech2, self).__init__()
self.model_config = model_config
self.encoder = Encoder(model_config)
self.variance_adaptor = VarianceAdaptor(preprocess_config, model_config)
self.decoder = Decoder(model_config)
self.mel_linear = nn.Linear(
model_config["transformer"]["decoder_hidden"],
preprocess_config["preprocessing"]["mel"]["n_mel_channels"],
)
self.postnet = PostNet()
self.speaker_emb = None
if model_config["multi_speaker"]:
with open(
os.path.join(
preprocess_config["path"]["preprocessed_path"], "speakers.json"
),
"r",
) as f:
n_speaker = len(json.load(f))
self.speaker_emb = nn.Embedding(
n_speaker,
model_config["transformer"]["encoder_hidden"],
)
使用如下代码打印参考项目的FastSpeech2模型结构
from model import FastSpeech2
from utils.tools import get_configs_of
preprocess_config, model_config, train_config = get_configs_of("AISHELL3")
print(FastSpeech2(preprocess_config, model_config))
其中get_configs_of是原参考项目没有的,在/utils/tools.py中增加如下代码
import yaml
def get_configs_of(dataset):
config_dir = os.path.join("./config", dataset)
preprocess_config = yaml.load(open(
os.path.join(config_dir, "preprocess.yaml"), "r"), Loader=yaml.FullLoader)
model_config = yaml.load(open(
os.path.join(config_dir, "model.yaml"), "r"), Loader=yaml.FullLoader)
train_config = yaml.load(open(
os.path.join(config_dir, "train.yaml"), "r"), Loader=yaml.FullLoader)
return preprocess_config, model_config, train_config
FastSpeech2结构打印如下,其中postnet模块在FastSpeech2的论文中是没有的,是此参考项目的作者增加的:
FastSpeech2(
(encoder): Encoder(
(src_word_emb): Embedding(361, 256, padding_idx=0)
(layer_stack): ModuleList(
(0): FFTBlock(
(slf_attn): MultiHeadAttention(
(w_qs): Linear(in_features=256, out_features=256, bias=True)
(w_ks): Linear(in_features=256, out_features=256, bias=True)
(w_vs): Linear(in_features=256, out_features=256, bias=True)
(attention): ScaledDotProductAttention(
(softmax): Softmax(dim=2)
)
(layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(fc): Linear(in_features=256, out_features=256, bias=True)
(dropout): Dropout(p=0.2, inplace=False)
)
(pos_ffn): PositionwiseFeedForward(
(w_1): Conv1d(256, 1024, kernel_size=(9,), stride=(1,), padding=(4,))
(w_2): Conv1d(1024, 256, kernel_size=(1,), stride=(1,))
(layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.2, inplace=False)
)
)
(1): FFTBlock(
(slf_attn): MultiHeadAttention(
(w_qs): Linear(in_features=256, out_features=256, bias=True)
(w_ks): Linear(in_features=256, out_features=256, bias=True)
(w_vs): Linear(in_features=256, out_features=256, bias=True)
(attention): ScaledDotProductAttention(
(softmax): Softmax(dim=2)
)
(layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(fc): Linear(in_features=256, out_features=256, bias=True)
(dropout): Dropout(p=0.2, inplace=False)
)
(pos_ffn): PositionwiseFeedForward(
(w_1): Conv1d(256, 1024, kernel_size=(9,), stride=(1,), padding=(4,))
(w_2): Conv1d(1024, 256, kernel_size=(1,), stride=(1,))
(layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.2, inplace=False)
)
)
(2): FFTBlock(
(slf_attn): MultiHeadAttention(
(w_qs): Linear(in_features=256, out_features=256, bias=True)
(w_ks): Linear(in_features=256, out_features=256, bias=True)
(w_vs): Linear(in_features=256, out_features=256, bias=True)
(attention): ScaledDotProductAttention(
(softmax): Softmax(dim=2)
)
(layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(fc): Linear(in_features=256, out_features=256, bias=True)
(dropout): Dropout(p=0.2, inplace=False)
)
(pos_ffn): PositionwiseFeedForward(
(w_1): Conv1d(256, 1024, kernel_size=(9,), stride=(1,), padding=(4,))
(w_2): Conv1d(1024, 256, kernel_size=(1,), stride=(1,))
(layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.2, inplace=False)
)
)
(3): FFTBlock(
(slf_attn): MultiHeadAttention(
(w_qs): Linear(in_features=256, out_features=256, bias=True)
(w_ks): Linear(in_features=256, out_features=256, bias=True)
(w_vs): Linear(in_features=256, out_features=256, bias=True)
(attention): ScaledDotProductAttention(
(softmax): Softmax(dim=2)
)
(layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(fc): Linear(in_features=256, out_features=256, bias=True)
(dropout): Dropout(p=0.2, inplace=False)
)
(pos_ffn): PositionwiseFeedForward(
(w_1): Conv1d(256, 1024, kernel_size=(9,), stride=(1,), padding=(4,))
(w_2): Conv1d(1024, 256, kernel_size=(1,), stride=(1,))
(layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.2, inplace=False)
)
)
)
)
(variance_adaptor): VarianceAdaptor(
(duration_predictor): VariancePredictor(
(conv_layer): Sequential(
(conv1d_1): Conv(
(conv): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
)
(relu_1): ReLU()
(layer_norm_1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout_1): Dropout(p=0.5, inplace=False)
(conv1d_2): Conv(
(conv): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
)
(relu_2): ReLU()
(layer_norm_2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout_2): Dropout(p=0.5, inplace=False)
)
(linear_layer): Linear(in_features=256, out_features=1, bias=True)
)
(length_regulator): LengthRegulator()
(pitch_predictor): VariancePredictor(
(conv_layer): Sequential(
(conv1d_1): Conv(
(conv): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
)
(relu_1): ReLU()
(layer_norm_1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout_1): Dropout(p=0.5, inplace=False)
(conv1d_2): Conv(
(conv): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
)
(relu_2): ReLU()
(layer_norm_2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout_2): Dropout(p=0.5, inplace=False)
)
(linear_layer): Linear(in_features=256, out_features=1, bias=True)
)
(energy_predictor): VariancePredictor(
(conv_layer): Sequential(
(conv1d_1): Conv(
(conv): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
)
(relu_1): ReLU()
(layer_norm_1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout_1): Dropout(p=0.5, inplace=False)
(conv1d_2): Conv(
(conv): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
)
(relu_2): ReLU()
(layer_norm_2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout_2): Dropout(p=0.5, inplace=False)
)
(linear_layer): Linear(in_features=256, out_features=1, bias=True)
)
(pitch_embedding): Embedding(256, 256)
(energy_embedding): Embedding(256, 256)
)
(decoder): Decoder(
(layer_stack): ModuleList(
(0): FFTBlock(
(slf_attn): MultiHeadAttention(
(w_qs): Linear(in_features=256, out_features=256, bias=True)
(w_ks): Linear(in_features=256, out_features=256, bias=True)
(w_vs): Linear(in_features=256, out_features=256, bias=True)
(attention): ScaledDotProductAttention(
(softmax): Softmax(dim=2)
)
(layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(fc): Linear(in_features=256, out_features=256, bias=True)
(dropout): Dropout(p=0.2, inplace=False)
)
(pos_ffn): PositionwiseFeedForward(
(w_1): Conv1d(256, 1024, kernel_size=(9,), stride=(1,), padding=(4,))
(w_2): Conv1d(1024, 256, kernel_size=(1,), stride=(1,))
(layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.2, inplace=False)
)
)
(1): FFTBlock(
(slf_attn): MultiHeadAttention(
(w_qs): Linear(in_features=256, out_features=256, bias=True)
(w_ks): Linear(in_features=256, out_features=256, bias=True)
(w_vs): Linear(in_features=256, out_features=256, bias=True)
(attention): ScaledDotProductAttention(
(softmax): Softmax(dim=2)
)
(layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(fc): Linear(in_features=256, out_features=256, bias=True)
(dropout): Dropout(p=0.2, inplace=False)
)
(pos_ffn): PositionwiseFeedForward(
(w_1): Conv1d(256, 1024, kernel_size=(9,), stride=(1,), padding=(4,))
(w_2): Conv1d(1024, 256, kernel_size=(1,), stride=(1,))
(layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.2, inplace=False)
)
)
(2): FFTBlock(
(slf_attn): MultiHeadAttention(
(w_qs): Linear(in_features=256, out_features=256, bias=True)
(w_ks): Linear(in_features=256, out_features=256, bias=True)
(w_vs): Linear(in_features=256, out_features=256, bias=True)
(attention): ScaledDotProductAttention(
(softmax): Softmax(dim=2)
)
(layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(fc): Linear(in_features=256, out_features=256, bias=True)
(dropout): Dropout(p=0.2, inplace=False)
)
(pos_ffn): PositionwiseFeedForward(
(w_1): Conv1d(256, 1024, kernel_size=(9,), stride=(1,), padding=(4,))
(w_2): Conv1d(1024, 256, kernel_size=(1,), stride=(1,))
(layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.2, inplace=False)
)
)
(3): FFTBlock(
(slf_attn): MultiHeadAttention(
(w_qs): Linear(in_features=256, out_features=256, bias=True)
(w_ks): Linear(in_features=256, out_features=256, bias=True)
(w_vs): Linear(in_features=256, out_features=256, bias=True)
(attention): ScaledDotProductAttention(
(softmax): Softmax(dim=2)
)
(layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(fc): Linear(in_features=256, out_features=256, bias=True)
(dropout): Dropout(p=0.2, inplace=False)
)
(pos_ffn): PositionwiseFeedForward(
(w_1): Conv1d(256, 1024, kernel_size=(9,), stride=(1,), padding=(4,))
(w_2): Conv1d(1024, 256, kernel_size=(1,), stride=(1,))
(layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.2, inplace=False)
)
)
(4): FFTBlock(
(slf_attn): MultiHeadAttention(
(w_qs): Linear(in_features=256, out_features=256, bias=True)
(w_ks): Linear(in_features=256, out_features=256, bias=True)
(w_vs): Linear(in_features=256, out_features=256, bias=True)
(attention): ScaledDotProductAttention(
(softmax): Softmax(dim=2)
)
(layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(fc): Linear(in_features=256, out_features=256, bias=True)
(dropout): Dropout(p=0.2, inplace=False)
)
(pos_ffn): PositionwiseFeedForward(
(w_1): Conv1d(256, 1024, kernel_size=(9,), stride=(1,), padding=(4,))
(w_2): Conv1d(1024, 256, kernel_size=(1,), stride=(1,))
(layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.2, inplace=False)
)
)
(5): FFTBlock(
(slf_attn): MultiHeadAttention(
(w_qs): Linear(in_features=256, out_features=256, bias=True)
(w_ks): Linear(in_features=256, out_features=256, bias=True)
(w_vs): Linear(in_features=256, out_features=256, bias=True)
(attention): ScaledDotProductAttention(
(softmax): Softmax(dim=2)
)
(layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(fc): Linear(in_features=256, out_features=256, bias=True)
(dropout): Dropout(p=0.2, inplace=False)
)
(pos_ffn): PositionwiseFeedForward(
(w_1): Conv1d(256, 1024, kernel_size=(9,), stride=(1,), padding=(4,))
(w_2): Conv1d(1024, 256, kernel_size=(1,), stride=(1,))
(layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.2, inplace=False)
)
)
)
)
(mel_linear): Linear(in_features=256, out_features=80, bias=True)
(postnet): PostNet(
(convolutions): ModuleList(
(0): Sequential(
(0): ConvNorm(
(conv): Conv1d(80, 512, kernel_size=(5,), stride=(1,), padding=(2,))
)
(1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(1): Sequential(
(0): ConvNorm(
(conv): Conv1d(512, 512, kernel_size=(5,), stride=(1,), padding=(2,))
)
(1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(2): Sequential(
(0): ConvNorm(
(conv): Conv1d(512, 512, kernel_size=(5,), stride=(1,), padding=(2,))
)
(1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(3): Sequential(
(0): ConvNorm(
(conv): Conv1d(512, 512, kernel_size=(5,), stride=(1,), padding=(2,))
)
(1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(4): Sequential(
(0): ConvNorm(
(conv): Conv1d(512, 80, kernel_size=(5,), stride=(1,), padding=(2,))
)
(1): BatchNorm1d(80, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(speaker_emb): Embedding(218, 256)
)
FastSpeech2使用前馈形的Transformer块FFTBlock
作为encoder和mel-spectrogram decoder的基础结构,FFTBlock
是由自注意力层slf_attn
和前馈神经网络pos_ffn
组成的。
FFTBlock
的实现位于/transformer/Layers.py,代码如下:
class FFTBlock(torch.nn.Module):
"""FFT Block"""
def __init__(self, d_model, n_head, d_k, d_v, d_inner, kernel_size, dropout=0.1):
super(FFTBlock, self).__init__()
self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
self.pos_ffn = PositionwiseFeedForward(
d_model, d_inner, kernel_size, dropout=dropout
)
def forward(self, enc_input, mask=None, slf_attn_mask=None):
enc_output, enc_slf_attn = self.slf_attn(
enc_input, enc_input, enc_input, mask=slf_attn_mask
)
enc_output = enc_output.masked_fill(mask.unsqueeze(-1), 0)
enc_output = self.pos_ffn(enc_output)
enc_output = enc_output.masked_fill(mask.unsqueeze(-1), 0)
return enc_output, enc_slf_attn
Encoder主要由词嵌入src_word_emb
后接4个FFTBlock
组成,其实现位于/transformer/Models.py。
class Encoder(nn.Module):
""" Encoder """
def __init__(self, config):
super(Encoder, self).__init__()
n_position = config["max_seq_len"] + 1
n_src_vocab = len(symbols) + 1
d_word_vec = config["transformer"]["encoder_hidden"]
n_layers = config["transformer"]["encoder_layer"]
n_head = config["transformer"]["encoder_head"]
d_k = d_v = (
config["transformer"]["encoder_hidden"]
// config["transformer"]["encoder_head"]
)
d_model = config["transformer"]["encoder_hidden"]
d_inner = config["transformer"]["conv_filter_size"]
kernel_size = config["transformer"]["conv_kernel_size"]
dropout = config["transformer"]["encoder_dropout"]
self.max_seq_len = config["max_seq_len"]
self.d_model = d_model
#词嵌入
self.src_word_emb = nn.Embedding(
n_src_vocab, d_word_vec, padding_idx=Constants.PAD
)
#位置编码
self.position_enc = nn.Parameter(
get_sinusoid_encoding_table(n_position, d_word_vec).unsqueeze(0),
requires_grad=False,
)
#4个FTTBlock
self.layer_stack = nn.ModuleList(
[
FFTBlock(
d_model, n_head, d_k, d_v, d_inner, kernel_size, dropout=dropout
)
for _ in range(n_layers)
]
)
Decoder主要由6个FFTBlock
组成,其实现位于/transformer/Models.py。
class Decoder(nn.Module):
""" Decoder """
def __init__(self, config):
super(Decoder, self).__init__()
n_position = config["max_seq_len"] + 1
d_word_vec = config["transformer"]["decoder_hidden"]
n_layers = config["transformer"]["decoder_layer"]
n_head = config["transformer"]["decoder_head"]
d_k = d_v = (
config["transformer"]["decoder_hidden"]
// config["transformer"]["decoder_head"]
)
d_model = config["transformer"]["decoder_hidden"]
d_inner = config["transformer"]["conv_filter_size"]
kernel_size = config["transformer"]["conv_kernel_size"]
dropout = config["transformer"]["decoder_dropout"]
self.max_seq_len = config["max_seq_len"]
self.d_model = d_model
self.position_enc = nn.Parameter(
get_sinusoid_encoding_table(n_position, d_word_vec).unsqueeze(0),
requires_grad=False,
)
#6个FFTBlock
self.layer_stack = nn.ModuleList(
[
FFTBlock(
d_model, n_head, d_k, d_v, d_inner, kernel_size, dropout=dropout
)
for _ in range(n_layers)
]
)
Variance Adaptor的结构如图b所示,由时长预测器duration_predictor
、音高预测器pitch_predictor
和能量预测器energy_predictor
组成,每个predictor的结构都一样,如图c所示。
Variance Adaptor的实现位于/model/modules.py,代码如下:
class VarianceAdaptor(nn.Module):
"""Variance Adaptor"""
def __init__(self, preprocess_config, model_config):
super(VarianceAdaptor, self).__init__()
self.duration_predictor = VariancePredictor(model_config)
self.length_regulator = LengthRegulator()
self.pitch_predictor = VariancePredictor(model_config)
self.energy_predictor = VariancePredictor(model_config)
self.pitch_feature_level = preprocess_config["preprocessing"]["pitch"][
"feature"
]
self.energy_feature_level = preprocess_config["preprocessing"]["energy"][
"feature"
]
assert self.pitch_feature_level in ["phoneme_level", "frame_level"]
assert self.energy_feature_level in ["phoneme_level", "frame_level"]
pitch_quantization = model_config["variance_embedding"]["pitch_quantization"]
energy_quantization = model_config["variance_embedding"]["energy_quantization"]
n_bins = model_config["variance_embedding"]["n_bins"]
assert pitch_quantization in ["linear", "log"]
assert energy_quantization in ["linear", "log"]
with open(
os.path.join(preprocess_config["path"]["preprocessed_path"], "stats.json")
) as f:
stats = json.load(f)
pitch_min, pitch_max = stats["pitch"][:2]
energy_min, energy_max = stats["energy"][:2]
if pitch_quantization == "log":
self.pitch_bins = nn.Parameter(
torch.exp(
torch.linspace(np.log(pitch_min), np.log(pitch_max), n_bins - 1)
),
requires_grad=False,
)
else:
self.pitch_bins = nn.Parameter(
torch.linspace(pitch_min, pitch_max, n_bins - 1),
requires_grad=False,
)
if energy_quantization == "log":
self.energy_bins = nn.Parameter(
torch.exp(
torch.linspace(np.log(energy_min), np.log(energy_max), n_bins - 1)
),
requires_grad=False,
)
else:
self.energy_bins = nn.Parameter(
torch.linspace(energy_min, energy_max, n_bins - 1),
requires_grad=False,
)
self.pitch_embedding = nn.Embedding(
n_bins, model_config["transformer"]["encoder_hidden"]
)
self.energy_embedding = nn.Embedding(
n_bins, model_config["transformer"]["encoder_hidden"]
)
Variance Predictor的实现位于/model/modules.py,代码如下:
class VariancePredictor(nn.Module):
"""Duration, Pitch and Energy Predictor"""
def __init__(self, model_config):
super(VariancePredictor, self).__init__()
self.input_size = model_config["transformer"]["encoder_hidden"]
self.filter_size = model_config["variance_predictor"]["filter_size"]
self.kernel = model_config["variance_predictor"]["kernel_size"]
self.conv_output_size = model_config["variance_predictor"]["filter_size"]
self.dropout = model_config["variance_predictor"]["dropout"]
self.conv_layer = nn.Sequential(
OrderedDict(
[
(
"conv1d_1",
Conv(
self.input_size,
self.filter_size,
kernel_size=self.kernel,
padding=(self.kernel - 1) // 2,
),
),
("relu_1", nn.ReLU()),
("layer_norm_1", nn.LayerNorm(self.filter_size)),
("dropout_1", nn.Dropout(self.dropout)),
(
"conv1d_2",
Conv(
self.filter_size,
self.filter_size,
kernel_size=self.kernel,
padding=1,
),
),
("relu_2", nn.ReLU()),
("layer_norm_2", nn.LayerNorm(self.filter_size)),
("dropout_2", nn.Dropout(self.dropout)),
]
)
)
self.linear_layer = nn.Linear(self.conv_output_size, 1)